Porting hypre to heterogeneous computer architectures: Strategies and experiences

Linear systems are occurring in many applications, and solving them can take a large amount of the total simulation time. The high performance library hypre provides a variety of interfaces and linear solvers, including various multigrid methods, that have achieved good scalability on a variety of h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parallel computing 2021-12, Vol.108 (C), p.102840, Article 102840
Hauptverfasser: Falgout, Robert D., Li, Ruipeng, Sjögreen, Björn, Wang, Lu, Yang, Ulrike Meier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 102840
container_title Parallel computing
container_volume 108
creator Falgout, Robert D.
Li, Ruipeng
Sjögreen, Björn
Wang, Lu
Yang, Ulrike Meier
description Linear systems are occurring in many applications, and solving them can take a large amount of the total simulation time. The high performance library hypre provides a variety of interfaces and linear solvers, including various multigrid methods, that have achieved good scalability on a variety of homogeneous parallel computer architectures. Heterogeneous architectures with nodes that have both CPUs and accelerators provide new challenges, since they require more fine-grained parallelism and reduced data movement between different memories on a single node as well as across nodes. We will discuss our experiences and strategies to port hypre to heterogeneous computers with accelerators, including the design of a new memory model, the use of abstractions, the BoxLoop macros in the structured and semi-structured interfaces, and the restructuring of algebraic multigrid (AMG) into modular components. We present numerical experiments comparing CPU and GPU performance for several test problems. •Software effort on porting the hypre library to accelerator-based architectures.•Models of memory management and execution policy on heterogeneous platforms.•Portability strategy for structured interface, loop abstractions, and solvers.•Strategy to enable the unstructured interface, preconditioners, and solvers on GPUs.•Performance study of comparing various multigrid solvers running on CPUs and GPUs.
doi_str_mv 10.1016/j.parco.2021.102840
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1823481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167819121000867</els_id><sourcerecordid>S0167819121000867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-c058b9b2095b2be229ca1cadd873f9bede45e8f224c7d8a5eb7180d6745a73653</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AjfBfcc82iYVXMjgCwQVdR3S5HYmg9OUJCPOvze1rl1dOJxzOPdD6JySBSW0vtwsBh2MXzDCaFaYLMkBmlEpWCE4rw_RLLtEIWlDj9FJjBtCSF1KMkOvLz4k16_wej8EwMnjNSQIfgU9-F3Exm-HXRZw7l-7BCbtAsQr_JaCTrByELHuLYbvAYKD3kA8RUed_oxw9nfn6OPu9n35UDw93z8ub54Kw0WVCkMq2TYtI03VshYYa4ymRlsrBe-aFiyUFciOsdIIK3UFraCS2FqUlRa8rvgcXUy9PianohnHrY3v-7xRUcl4KWk28clkgo8xQKeG4LY67BUlakSnNuoXnRrRqQldTl1PKcj7vxyEsX58zrowtlvv_s3_AEtuee4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Porting hypre to heterogeneous computer architectures: Strategies and experiences</title><source>Access via ScienceDirect (Elsevier)</source><creator>Falgout, Robert D. ; Li, Ruipeng ; Sjögreen, Björn ; Wang, Lu ; Yang, Ulrike Meier</creator><creatorcontrib>Falgout, Robert D. ; Li, Ruipeng ; Sjögreen, Björn ; Wang, Lu ; Yang, Ulrike Meier</creatorcontrib><description>Linear systems are occurring in many applications, and solving them can take a large amount of the total simulation time. The high performance library hypre provides a variety of interfaces and linear solvers, including various multigrid methods, that have achieved good scalability on a variety of homogeneous parallel computer architectures. Heterogeneous architectures with nodes that have both CPUs and accelerators provide new challenges, since they require more fine-grained parallelism and reduced data movement between different memories on a single node as well as across nodes. We will discuss our experiences and strategies to port hypre to heterogeneous computers with accelerators, including the design of a new memory model, the use of abstractions, the BoxLoop macros in the structured and semi-structured interfaces, and the restructuring of algebraic multigrid (AMG) into modular components. We present numerical experiments comparing CPU and GPU performance for several test problems. •Software effort on porting the hypre library to accelerator-based architectures.•Models of memory management and execution policy on heterogeneous platforms.•Portability strategy for structured interface, loop abstractions, and solvers.•Strategy to enable the unstructured interface, preconditioners, and solvers on GPUs.•Performance study of comparing various multigrid solvers running on CPUs and GPUs.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/j.parco.2021.102840</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>GPU computing ; HPC ; Iterative methods ; Multigrid methods ; Preconditioning techniques</subject><ispartof>Parallel computing, 2021-12, Vol.108 (C), p.102840, Article 102840</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-c058b9b2095b2be229ca1cadd873f9bede45e8f224c7d8a5eb7180d6745a73653</citedby><cites>FETCH-LOGICAL-c375t-c058b9b2095b2be229ca1cadd873f9bede45e8f224c7d8a5eb7180d6745a73653</cites><orcidid>0000-0002-0927-4329 ; 0000-0003-4884-0087 ; 0000-0002-6957-0445 ; 0000-0003-2802-5763 ; 0000000348840087 ; 0000000269570445 ; 0000000209274329 ; 0000000328025763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.parco.2021.102840$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1823481$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Falgout, Robert D.</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Sjögreen, Björn</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Yang, Ulrike Meier</creatorcontrib><title>Porting hypre to heterogeneous computer architectures: Strategies and experiences</title><title>Parallel computing</title><description>Linear systems are occurring in many applications, and solving them can take a large amount of the total simulation time. The high performance library hypre provides a variety of interfaces and linear solvers, including various multigrid methods, that have achieved good scalability on a variety of homogeneous parallel computer architectures. Heterogeneous architectures with nodes that have both CPUs and accelerators provide new challenges, since they require more fine-grained parallelism and reduced data movement between different memories on a single node as well as across nodes. We will discuss our experiences and strategies to port hypre to heterogeneous computers with accelerators, including the design of a new memory model, the use of abstractions, the BoxLoop macros in the structured and semi-structured interfaces, and the restructuring of algebraic multigrid (AMG) into modular components. We present numerical experiments comparing CPU and GPU performance for several test problems. •Software effort on porting the hypre library to accelerator-based architectures.•Models of memory management and execution policy on heterogeneous platforms.•Portability strategy for structured interface, loop abstractions, and solvers.•Strategy to enable the unstructured interface, preconditioners, and solvers on GPUs.•Performance study of comparing various multigrid solvers running on CPUs and GPUs.</description><subject>GPU computing</subject><subject>HPC</subject><subject>Iterative methods</subject><subject>Multigrid methods</subject><subject>Preconditioning techniques</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AjfBfcc82iYVXMjgCwQVdR3S5HYmg9OUJCPOvze1rl1dOJxzOPdD6JySBSW0vtwsBh2MXzDCaFaYLMkBmlEpWCE4rw_RLLtEIWlDj9FJjBtCSF1KMkOvLz4k16_wej8EwMnjNSQIfgU9-F3Exm-HXRZw7l-7BCbtAsQr_JaCTrByELHuLYbvAYKD3kA8RUed_oxw9nfn6OPu9n35UDw93z8ub54Kw0WVCkMq2TYtI03VshYYa4ymRlsrBe-aFiyUFciOsdIIK3UFraCS2FqUlRa8rvgcXUy9PianohnHrY3v-7xRUcl4KWk28clkgo8xQKeG4LY67BUlakSnNuoXnRrRqQldTl1PKcj7vxyEsX58zrowtlvv_s3_AEtuee4</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Falgout, Robert D.</creator><creator>Li, Ruipeng</creator><creator>Sjögreen, Björn</creator><creator>Wang, Lu</creator><creator>Yang, Ulrike Meier</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0927-4329</orcidid><orcidid>https://orcid.org/0000-0003-4884-0087</orcidid><orcidid>https://orcid.org/0000-0002-6957-0445</orcidid><orcidid>https://orcid.org/0000-0003-2802-5763</orcidid><orcidid>https://orcid.org/0000000348840087</orcidid><orcidid>https://orcid.org/0000000269570445</orcidid><orcidid>https://orcid.org/0000000209274329</orcidid><orcidid>https://orcid.org/0000000328025763</orcidid></search><sort><creationdate>202112</creationdate><title>Porting hypre to heterogeneous computer architectures: Strategies and experiences</title><author>Falgout, Robert D. ; Li, Ruipeng ; Sjögreen, Björn ; Wang, Lu ; Yang, Ulrike Meier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-c058b9b2095b2be229ca1cadd873f9bede45e8f224c7d8a5eb7180d6745a73653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>GPU computing</topic><topic>HPC</topic><topic>Iterative methods</topic><topic>Multigrid methods</topic><topic>Preconditioning techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falgout, Robert D.</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Sjögreen, Björn</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Yang, Ulrike Meier</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falgout, Robert D.</au><au>Li, Ruipeng</au><au>Sjögreen, Björn</au><au>Wang, Lu</au><au>Yang, Ulrike Meier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porting hypre to heterogeneous computer architectures: Strategies and experiences</atitle><jtitle>Parallel computing</jtitle><date>2021-12</date><risdate>2021</risdate><volume>108</volume><issue>C</issue><spage>102840</spage><pages>102840-</pages><artnum>102840</artnum><issn>0167-8191</issn><eissn>1872-7336</eissn><abstract>Linear systems are occurring in many applications, and solving them can take a large amount of the total simulation time. The high performance library hypre provides a variety of interfaces and linear solvers, including various multigrid methods, that have achieved good scalability on a variety of homogeneous parallel computer architectures. Heterogeneous architectures with nodes that have both CPUs and accelerators provide new challenges, since they require more fine-grained parallelism and reduced data movement between different memories on a single node as well as across nodes. We will discuss our experiences and strategies to port hypre to heterogeneous computers with accelerators, including the design of a new memory model, the use of abstractions, the BoxLoop macros in the structured and semi-structured interfaces, and the restructuring of algebraic multigrid (AMG) into modular components. We present numerical experiments comparing CPU and GPU performance for several test problems. •Software effort on porting the hypre library to accelerator-based architectures.•Models of memory management and execution policy on heterogeneous platforms.•Portability strategy for structured interface, loop abstractions, and solvers.•Strategy to enable the unstructured interface, preconditioners, and solvers on GPUs.•Performance study of comparing various multigrid solvers running on CPUs and GPUs.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.parco.2021.102840</doi><orcidid>https://orcid.org/0000-0002-0927-4329</orcidid><orcidid>https://orcid.org/0000-0003-4884-0087</orcidid><orcidid>https://orcid.org/0000-0002-6957-0445</orcidid><orcidid>https://orcid.org/0000-0003-2802-5763</orcidid><orcidid>https://orcid.org/0000000348840087</orcidid><orcidid>https://orcid.org/0000000269570445</orcidid><orcidid>https://orcid.org/0000000209274329</orcidid><orcidid>https://orcid.org/0000000328025763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8191
ispartof Parallel computing, 2021-12, Vol.108 (C), p.102840, Article 102840
issn 0167-8191
1872-7336
language eng
recordid cdi_osti_scitechconnect_1823481
source Access via ScienceDirect (Elsevier)
subjects GPU computing
HPC
Iterative methods
Multigrid methods
Preconditioning techniques
title Porting hypre to heterogeneous computer architectures: Strategies and experiences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porting%20hypre%20to%20heterogeneous%20computer%20architectures:%20Strategies%20and%20experiences&rft.jtitle=Parallel%20computing&rft.au=Falgout,%20Robert%20D.&rft.date=2021-12&rft.volume=108&rft.issue=C&rft.spage=102840&rft.pages=102840-&rft.artnum=102840&rft.issn=0167-8191&rft.eissn=1872-7336&rft_id=info:doi/10.1016/j.parco.2021.102840&rft_dat=%3Celsevier_osti_%3ES0167819121000867%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167819121000867&rfr_iscdi=true