A Domestic Program for Liquid Metal PFC Research in Fusion
While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self...
Gespeichert in:
Veröffentlicht in: | Journal of fusion energy 2020-12, Vol.39 (6), p.441-447 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 447 |
---|---|
container_issue | 6 |
container_start_page | 441 |
container_title | Journal of fusion energy |
container_volume | 39 |
creator | Andruczyk, D. Maingi, R. Kessel, Chuck Curreli, D. Kolemen, E. Canik, J. Pint, B. Youchison, D. Smolentsev, S. |
description | While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self-healing”. Following the Fusion Energy System Study on Liquid Metal Plasma Facing Components study that recently was completed by Kessel et al. (Fusion Sci Technnol 75:886, 2019) a domestic LM PFC design program has been initiated to develop reactor-relevant LM PFC concepts. This program seeks to evaluate LM PFC concepts for a Fusion Nuclear Science Facility (FNSF) or a Compact Pilot Plant via engineering design calculations, modeling of PMI and PFC components and laboratory experiments. The latter involves experiments in dedicated test stands and confinement devices and seeks to identify and answer open questions in LM PFC design. The new national LM PFC program is first investigating lithium as the plasma facing material for a flowing divertor PFC concept. Several flow speeds will be evaluated, ranging from ~ cm/s to m/s. The surface temperature will initially be held below the strongly evaporative limit in the first design; higher temperatures with strong evaporation will be considered in future concepts. Other topics of interest include: understanding of the hydrogen and helium interaction with the liquid lithium; single effect experiments on wetting, compatibility and embrittlement; and prototypical experiments for control and characterization of flowing LM. A path to plasma and future tokamak exposure of these concepts will be developed. |
doi_str_mv | 10.1007/s10894-020-00259-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1821857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714496799</galeid><sourcerecordid>A714496799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-cb2e413c0a1bcb1c139a8bb1b9cf5618e0b6c3dedb166d8a29c68ac3103cff4d3</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVIoY7bP5CTSM7rzkj7IeVmnDgtuNSU9iy0s1pbxl450vrQfx-lW8it6CCQnmd452XsFmGBAM2XhKB0WYCAAkBUuoArNsOqEYWuNF6zGWCdvyXKj-wmpQMAaFXqGXtY8sdwcmn0xLcx7KI98T5EvvEvF9_x7260R75dr_hPl5yNtOd-4OtL8mH4xD709pjc53_3nP1eP_1afS02P56_rZabgkolxoJa4UqUBBZbapFQaqvaFltNfVWjctDWJDvXtVjXnbJCU60sSQRJfV92cs7uprkhpzSJ_OhoT2EYHI0GlUBVNRm6n6BzDC-XvI85hEscci4jNCoJjWpEphYTtbNHZ_zQhzFayqdzJ59Hut7n92WDZanrRussiEmgGFKKrjfn6E82_jEI5q15MzVvcvPmb_MGsiQnKWV42Ln4nuU_1ivGdoP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918307872</pqid></control><display><type>article</type><title>A Domestic Program for Liquid Metal PFC Research in Fusion</title><source>Springer Journals</source><source>ProQuest Central</source><creator>Andruczyk, D. ; Maingi, R. ; Kessel, Chuck ; Curreli, D. ; Kolemen, E. ; Canik, J. ; Pint, B. ; Youchison, D. ; Smolentsev, S.</creator><creatorcontrib>Andruczyk, D. ; Maingi, R. ; Kessel, Chuck ; Curreli, D. ; Kolemen, E. ; Canik, J. ; Pint, B. ; Youchison, D. ; Smolentsev, S. ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><description>While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self-healing”. Following the Fusion Energy System Study on Liquid Metal Plasma Facing Components study that recently was completed by Kessel et al. (Fusion Sci Technnol 75:886, 2019) a domestic LM PFC design program has been initiated to develop reactor-relevant LM PFC concepts. This program seeks to evaluate LM PFC concepts for a Fusion Nuclear Science Facility (FNSF) or a Compact Pilot Plant via engineering design calculations, modeling of PMI and PFC components and laboratory experiments. The latter involves experiments in dedicated test stands and confinement devices and seeks to identify and answer open questions in LM PFC design. The new national LM PFC program is first investigating lithium as the plasma facing material for a flowing divertor PFC concept. Several flow speeds will be evaluated, ranging from ~ cm/s to m/s. The surface temperature will initially be held below the strongly evaporative limit in the first design; higher temperatures with strong evaporation will be considered in future concepts. Other topics of interest include: understanding of the hydrogen and helium interaction with the liquid lithium; single effect experiments on wetting, compatibility and embrittlement; and prototypical experiments for control and characterization of flowing LM. A path to plasma and future tokamak exposure of these concepts will be developed.</description><identifier>ISSN: 0164-0313</identifier><identifier>EISSN: 1572-9591</identifier><identifier>DOI: 10.1007/s10894-020-00259-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Design ; Design engineering ; divertor ; Energy Systems ; Fusion ; Heat transfer ; Hydrogen embrittlement ; Liquid lithium ; liquid metal ; Liquid metals ; Lithium ; Magnetic fusion ; Metallic plasmas ; Nuclear Energy ; Nuclear Fusion ; Nuclear reactors ; Original Research ; PFC ; Physics ; Physics and Astronomy ; Plasma ; Plasma Physics ; Radiation ; Sustainable Development ; Temperature ; Tokamaks</subject><ispartof>Journal of fusion energy, 2020-12, Vol.39 (6), p.441-447</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-cb2e413c0a1bcb1c139a8bb1b9cf5618e0b6c3dedb166d8a29c68ac3103cff4d3</citedby><cites>FETCH-LOGICAL-c482t-cb2e413c0a1bcb1c139a8bb1b9cf5618e0b6c3dedb166d8a29c68ac3103cff4d3</cites><orcidid>0000-0001-6613-3509 ; 0000000166133509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10894-020-00259-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918307872?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72341</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1821857$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Andruczyk, D.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Kessel, Chuck</creatorcontrib><creatorcontrib>Curreli, D.</creatorcontrib><creatorcontrib>Kolemen, E.</creatorcontrib><creatorcontrib>Canik, J.</creatorcontrib><creatorcontrib>Pint, B.</creatorcontrib><creatorcontrib>Youchison, D.</creatorcontrib><creatorcontrib>Smolentsev, S.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><title>A Domestic Program for Liquid Metal PFC Research in Fusion</title><title>Journal of fusion energy</title><addtitle>J Fusion Energ</addtitle><description>While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self-healing”. Following the Fusion Energy System Study on Liquid Metal Plasma Facing Components study that recently was completed by Kessel et al. (Fusion Sci Technnol 75:886, 2019) a domestic LM PFC design program has been initiated to develop reactor-relevant LM PFC concepts. This program seeks to evaluate LM PFC concepts for a Fusion Nuclear Science Facility (FNSF) or a Compact Pilot Plant via engineering design calculations, modeling of PMI and PFC components and laboratory experiments. The latter involves experiments in dedicated test stands and confinement devices and seeks to identify and answer open questions in LM PFC design. The new national LM PFC program is first investigating lithium as the plasma facing material for a flowing divertor PFC concept. Several flow speeds will be evaluated, ranging from ~ cm/s to m/s. The surface temperature will initially be held below the strongly evaporative limit in the first design; higher temperatures with strong evaporation will be considered in future concepts. Other topics of interest include: understanding of the hydrogen and helium interaction with the liquid lithium; single effect experiments on wetting, compatibility and embrittlement; and prototypical experiments for control and characterization of flowing LM. A path to plasma and future tokamak exposure of these concepts will be developed.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Design</subject><subject>Design engineering</subject><subject>divertor</subject><subject>Energy Systems</subject><subject>Fusion</subject><subject>Heat transfer</subject><subject>Hydrogen embrittlement</subject><subject>Liquid lithium</subject><subject>liquid metal</subject><subject>Liquid metals</subject><subject>Lithium</subject><subject>Magnetic fusion</subject><subject>Metallic plasmas</subject><subject>Nuclear Energy</subject><subject>Nuclear Fusion</subject><subject>Nuclear reactors</subject><subject>Original Research</subject><subject>PFC</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma Physics</subject><subject>Radiation</subject><subject>Sustainable Development</subject><subject>Temperature</subject><subject>Tokamaks</subject><issn>0164-0313</issn><issn>1572-9591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1rGzEQhkVIoY7bP5CTSM7rzkj7IeVmnDgtuNSU9iy0s1pbxl450vrQfx-lW8it6CCQnmd452XsFmGBAM2XhKB0WYCAAkBUuoArNsOqEYWuNF6zGWCdvyXKj-wmpQMAaFXqGXtY8sdwcmn0xLcx7KI98T5EvvEvF9_x7260R75dr_hPl5yNtOd-4OtL8mH4xD709pjc53_3nP1eP_1afS02P56_rZabgkolxoJa4UqUBBZbapFQaqvaFltNfVWjctDWJDvXtVjXnbJCU60sSQRJfV92cs7uprkhpzSJ_OhoT2EYHI0GlUBVNRm6n6BzDC-XvI85hEscci4jNCoJjWpEphYTtbNHZ_zQhzFayqdzJ59Hut7n92WDZanrRussiEmgGFKKrjfn6E82_jEI5q15MzVvcvPmb_MGsiQnKWV42Ln4nuU_1ivGdoP4</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Andruczyk, D.</creator><creator>Maingi, R.</creator><creator>Kessel, Chuck</creator><creator>Curreli, D.</creator><creator>Kolemen, E.</creator><creator>Canik, J.</creator><creator>Pint, B.</creator><creator>Youchison, D.</creator><creator>Smolentsev, S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6613-3509</orcidid><orcidid>https://orcid.org/0000000166133509</orcidid></search><sort><creationdate>20201201</creationdate><title>A Domestic Program for Liquid Metal PFC Research in Fusion</title><author>Andruczyk, D. ; Maingi, R. ; Kessel, Chuck ; Curreli, D. ; Kolemen, E. ; Canik, J. ; Pint, B. ; Youchison, D. ; Smolentsev, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-cb2e413c0a1bcb1c139a8bb1b9cf5618e0b6c3dedb166d8a29c68ac3103cff4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Design</topic><topic>Design engineering</topic><topic>divertor</topic><topic>Energy Systems</topic><topic>Fusion</topic><topic>Heat transfer</topic><topic>Hydrogen embrittlement</topic><topic>Liquid lithium</topic><topic>liquid metal</topic><topic>Liquid metals</topic><topic>Lithium</topic><topic>Magnetic fusion</topic><topic>Metallic plasmas</topic><topic>Nuclear Energy</topic><topic>Nuclear Fusion</topic><topic>Nuclear reactors</topic><topic>Original Research</topic><topic>PFC</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma Physics</topic><topic>Radiation</topic><topic>Sustainable Development</topic><topic>Temperature</topic><topic>Tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andruczyk, D.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Kessel, Chuck</creatorcontrib><creatorcontrib>Curreli, D.</creatorcontrib><creatorcontrib>Kolemen, E.</creatorcontrib><creatorcontrib>Canik, J.</creatorcontrib><creatorcontrib>Pint, B.</creatorcontrib><creatorcontrib>Youchison, D.</creatorcontrib><creatorcontrib>Smolentsev, S.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of fusion energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andruczyk, D.</au><au>Maingi, R.</au><au>Kessel, Chuck</au><au>Curreli, D.</au><au>Kolemen, E.</au><au>Canik, J.</au><au>Pint, B.</au><au>Youchison, D.</au><au>Smolentsev, S.</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Domestic Program for Liquid Metal PFC Research in Fusion</atitle><jtitle>Journal of fusion energy</jtitle><stitle>J Fusion Energ</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>441</spage><epage>447</epage><pages>441-447</pages><issn>0164-0313</issn><eissn>1572-9591</eissn><abstract>While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self-healing”. Following the Fusion Energy System Study on Liquid Metal Plasma Facing Components study that recently was completed by Kessel et al. (Fusion Sci Technnol 75:886, 2019) a domestic LM PFC design program has been initiated to develop reactor-relevant LM PFC concepts. This program seeks to evaluate LM PFC concepts for a Fusion Nuclear Science Facility (FNSF) or a Compact Pilot Plant via engineering design calculations, modeling of PMI and PFC components and laboratory experiments. The latter involves experiments in dedicated test stands and confinement devices and seeks to identify and answer open questions in LM PFC design. The new national LM PFC program is first investigating lithium as the plasma facing material for a flowing divertor PFC concept. Several flow speeds will be evaluated, ranging from ~ cm/s to m/s. The surface temperature will initially be held below the strongly evaporative limit in the first design; higher temperatures with strong evaporation will be considered in future concepts. Other topics of interest include: understanding of the hydrogen and helium interaction with the liquid lithium; single effect experiments on wetting, compatibility and embrittlement; and prototypical experiments for control and characterization of flowing LM. A path to plasma and future tokamak exposure of these concepts will be developed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10894-020-00259-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6613-3509</orcidid><orcidid>https://orcid.org/0000000166133509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0164-0313 |
ispartof | Journal of fusion energy, 2020-12, Vol.39 (6), p.441-447 |
issn | 0164-0313 1572-9591 |
language | eng |
recordid | cdi_osti_scitechconnect_1821857 |
source | Springer Journals; ProQuest Central |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Design Design engineering divertor Energy Systems Fusion Heat transfer Hydrogen embrittlement Liquid lithium liquid metal Liquid metals Lithium Magnetic fusion Metallic plasmas Nuclear Energy Nuclear Fusion Nuclear reactors Original Research PFC Physics Physics and Astronomy Plasma Plasma Physics Radiation Sustainable Development Temperature Tokamaks |
title | A Domestic Program for Liquid Metal PFC Research in Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Domestic%20Program%20for%20Liquid%20Metal%20PFC%20Research%20in%20Fusion&rft.jtitle=Journal%20of%20fusion%20energy&rft.au=Andruczyk,%20D.&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2020-12-01&rft.volume=39&rft.issue=6&rft.spage=441&rft.epage=447&rft.pages=441-447&rft.issn=0164-0313&rft.eissn=1572-9591&rft_id=info:doi/10.1007/s10894-020-00259-0&rft_dat=%3Cgale_osti_%3EA714496799%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918307872&rft_id=info:pmid/&rft_galeid=A714496799&rfr_iscdi=true |