A Domestic Program for Liquid Metal PFC Research in Fusion

While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fusion energy 2020-12, Vol.39 (6), p.441-447
Hauptverfasser: Andruczyk, D., Maingi, R., Kessel, Chuck, Curreli, D., Kolemen, E., Canik, J., Pint, B., Youchison, D., Smolentsev, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 6
container_start_page 441
container_title Journal of fusion energy
container_volume 39
creator Andruczyk, D.
Maingi, R.
Kessel, Chuck
Curreli, D.
Kolemen, E.
Canik, J.
Pint, B.
Youchison, D.
Smolentsev, S.
description While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self-healing”. Following the Fusion Energy System Study on Liquid Metal Plasma Facing Components study that recently was completed by Kessel et al. (Fusion Sci Technnol 75:886, 2019) a domestic LM PFC design program has been initiated to develop reactor-relevant LM PFC concepts. This program seeks to evaluate LM PFC concepts for a Fusion Nuclear Science Facility (FNSF) or a Compact Pilot Plant via engineering design calculations, modeling of PMI and PFC components and laboratory experiments. The latter involves experiments in dedicated test stands and confinement devices and seeks to identify and answer open questions in LM PFC design. The new national LM PFC program is first investigating lithium as the plasma facing material for a flowing divertor PFC concept. Several flow speeds will be evaluated, ranging from ~ cm/s to m/s. The surface temperature will initially be held below the strongly evaporative limit in the first design; higher temperatures with strong evaporation will be considered in future concepts. Other topics of interest include: understanding of the hydrogen and helium interaction with the liquid lithium; single effect experiments on wetting, compatibility and embrittlement; and prototypical experiments for control and characterization of flowing LM. A path to plasma and future tokamak exposure of these concepts will be developed.
doi_str_mv 10.1007/s10894-020-00259-0
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1821857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714496799</galeid><sourcerecordid>A714496799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-cb2e413c0a1bcb1c139a8bb1b9cf5618e0b6c3dedb166d8a29c68ac3103cff4d3</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVIoY7bP5CTSM7rzkj7IeVmnDgtuNSU9iy0s1pbxl450vrQfx-lW8it6CCQnmd452XsFmGBAM2XhKB0WYCAAkBUuoArNsOqEYWuNF6zGWCdvyXKj-wmpQMAaFXqGXtY8sdwcmn0xLcx7KI98T5EvvEvF9_x7260R75dr_hPl5yNtOd-4OtL8mH4xD709pjc53_3nP1eP_1afS02P56_rZabgkolxoJa4UqUBBZbapFQaqvaFltNfVWjctDWJDvXtVjXnbJCU60sSQRJfV92cs7uprkhpzSJ_OhoT2EYHI0GlUBVNRm6n6BzDC-XvI85hEscci4jNCoJjWpEphYTtbNHZ_zQhzFayqdzJ59Hut7n92WDZanrRussiEmgGFKKrjfn6E82_jEI5q15MzVvcvPmb_MGsiQnKWV42Ln4nuU_1ivGdoP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918307872</pqid></control><display><type>article</type><title>A Domestic Program for Liquid Metal PFC Research in Fusion</title><source>Springer Journals</source><source>ProQuest Central</source><creator>Andruczyk, D. ; Maingi, R. ; Kessel, Chuck ; Curreli, D. ; Kolemen, E. ; Canik, J. ; Pint, B. ; Youchison, D. ; Smolentsev, S.</creator><creatorcontrib>Andruczyk, D. ; Maingi, R. ; Kessel, Chuck ; Curreli, D. ; Kolemen, E. ; Canik, J. ; Pint, B. ; Youchison, D. ; Smolentsev, S. ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><description>While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self-healing”. Following the Fusion Energy System Study on Liquid Metal Plasma Facing Components study that recently was completed by Kessel et al. (Fusion Sci Technnol 75:886, 2019) a domestic LM PFC design program has been initiated to develop reactor-relevant LM PFC concepts. This program seeks to evaluate LM PFC concepts for a Fusion Nuclear Science Facility (FNSF) or a Compact Pilot Plant via engineering design calculations, modeling of PMI and PFC components and laboratory experiments. The latter involves experiments in dedicated test stands and confinement devices and seeks to identify and answer open questions in LM PFC design. The new national LM PFC program is first investigating lithium as the plasma facing material for a flowing divertor PFC concept. Several flow speeds will be evaluated, ranging from ~ cm/s to m/s. The surface temperature will initially be held below the strongly evaporative limit in the first design; higher temperatures with strong evaporation will be considered in future concepts. Other topics of interest include: understanding of the hydrogen and helium interaction with the liquid lithium; single effect experiments on wetting, compatibility and embrittlement; and prototypical experiments for control and characterization of flowing LM. A path to plasma and future tokamak exposure of these concepts will be developed.</description><identifier>ISSN: 0164-0313</identifier><identifier>EISSN: 1572-9591</identifier><identifier>DOI: 10.1007/s10894-020-00259-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Design ; Design engineering ; divertor ; Energy Systems ; Fusion ; Heat transfer ; Hydrogen embrittlement ; Liquid lithium ; liquid metal ; Liquid metals ; Lithium ; Magnetic fusion ; Metallic plasmas ; Nuclear Energy ; Nuclear Fusion ; Nuclear reactors ; Original Research ; PFC ; Physics ; Physics and Astronomy ; Plasma ; Plasma Physics ; Radiation ; Sustainable Development ; Temperature ; Tokamaks</subject><ispartof>Journal of fusion energy, 2020-12, Vol.39 (6), p.441-447</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-cb2e413c0a1bcb1c139a8bb1b9cf5618e0b6c3dedb166d8a29c68ac3103cff4d3</citedby><cites>FETCH-LOGICAL-c482t-cb2e413c0a1bcb1c139a8bb1b9cf5618e0b6c3dedb166d8a29c68ac3103cff4d3</cites><orcidid>0000-0001-6613-3509 ; 0000000166133509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10894-020-00259-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918307872?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72341</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1821857$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Andruczyk, D.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Kessel, Chuck</creatorcontrib><creatorcontrib>Curreli, D.</creatorcontrib><creatorcontrib>Kolemen, E.</creatorcontrib><creatorcontrib>Canik, J.</creatorcontrib><creatorcontrib>Pint, B.</creatorcontrib><creatorcontrib>Youchison, D.</creatorcontrib><creatorcontrib>Smolentsev, S.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><title>A Domestic Program for Liquid Metal PFC Research in Fusion</title><title>Journal of fusion energy</title><addtitle>J Fusion Energ</addtitle><description>While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self-healing”. Following the Fusion Energy System Study on Liquid Metal Plasma Facing Components study that recently was completed by Kessel et al. (Fusion Sci Technnol 75:886, 2019) a domestic LM PFC design program has been initiated to develop reactor-relevant LM PFC concepts. This program seeks to evaluate LM PFC concepts for a Fusion Nuclear Science Facility (FNSF) or a Compact Pilot Plant via engineering design calculations, modeling of PMI and PFC components and laboratory experiments. The latter involves experiments in dedicated test stands and confinement devices and seeks to identify and answer open questions in LM PFC design. The new national LM PFC program is first investigating lithium as the plasma facing material for a flowing divertor PFC concept. Several flow speeds will be evaluated, ranging from ~ cm/s to m/s. The surface temperature will initially be held below the strongly evaporative limit in the first design; higher temperatures with strong evaporation will be considered in future concepts. Other topics of interest include: understanding of the hydrogen and helium interaction with the liquid lithium; single effect experiments on wetting, compatibility and embrittlement; and prototypical experiments for control and characterization of flowing LM. A path to plasma and future tokamak exposure of these concepts will be developed.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Design</subject><subject>Design engineering</subject><subject>divertor</subject><subject>Energy Systems</subject><subject>Fusion</subject><subject>Heat transfer</subject><subject>Hydrogen embrittlement</subject><subject>Liquid lithium</subject><subject>liquid metal</subject><subject>Liquid metals</subject><subject>Lithium</subject><subject>Magnetic fusion</subject><subject>Metallic plasmas</subject><subject>Nuclear Energy</subject><subject>Nuclear Fusion</subject><subject>Nuclear reactors</subject><subject>Original Research</subject><subject>PFC</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma Physics</subject><subject>Radiation</subject><subject>Sustainable Development</subject><subject>Temperature</subject><subject>Tokamaks</subject><issn>0164-0313</issn><issn>1572-9591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1rGzEQhkVIoY7bP5CTSM7rzkj7IeVmnDgtuNSU9iy0s1pbxl450vrQfx-lW8it6CCQnmd452XsFmGBAM2XhKB0WYCAAkBUuoArNsOqEYWuNF6zGWCdvyXKj-wmpQMAaFXqGXtY8sdwcmn0xLcx7KI98T5EvvEvF9_x7260R75dr_hPl5yNtOd-4OtL8mH4xD709pjc53_3nP1eP_1afS02P56_rZabgkolxoJa4UqUBBZbapFQaqvaFltNfVWjctDWJDvXtVjXnbJCU60sSQRJfV92cs7uprkhpzSJ_OhoT2EYHI0GlUBVNRm6n6BzDC-XvI85hEscci4jNCoJjWpEphYTtbNHZ_zQhzFayqdzJ59Hut7n92WDZanrRussiEmgGFKKrjfn6E82_jEI5q15MzVvcvPmb_MGsiQnKWV42Ln4nuU_1ivGdoP4</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Andruczyk, D.</creator><creator>Maingi, R.</creator><creator>Kessel, Chuck</creator><creator>Curreli, D.</creator><creator>Kolemen, E.</creator><creator>Canik, J.</creator><creator>Pint, B.</creator><creator>Youchison, D.</creator><creator>Smolentsev, S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6613-3509</orcidid><orcidid>https://orcid.org/0000000166133509</orcidid></search><sort><creationdate>20201201</creationdate><title>A Domestic Program for Liquid Metal PFC Research in Fusion</title><author>Andruczyk, D. ; Maingi, R. ; Kessel, Chuck ; Curreli, D. ; Kolemen, E. ; Canik, J. ; Pint, B. ; Youchison, D. ; Smolentsev, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-cb2e413c0a1bcb1c139a8bb1b9cf5618e0b6c3dedb166d8a29c68ac3103cff4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Design</topic><topic>Design engineering</topic><topic>divertor</topic><topic>Energy Systems</topic><topic>Fusion</topic><topic>Heat transfer</topic><topic>Hydrogen embrittlement</topic><topic>Liquid lithium</topic><topic>liquid metal</topic><topic>Liquid metals</topic><topic>Lithium</topic><topic>Magnetic fusion</topic><topic>Metallic plasmas</topic><topic>Nuclear Energy</topic><topic>Nuclear Fusion</topic><topic>Nuclear reactors</topic><topic>Original Research</topic><topic>PFC</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma Physics</topic><topic>Radiation</topic><topic>Sustainable Development</topic><topic>Temperature</topic><topic>Tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andruczyk, D.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Kessel, Chuck</creatorcontrib><creatorcontrib>Curreli, D.</creatorcontrib><creatorcontrib>Kolemen, E.</creatorcontrib><creatorcontrib>Canik, J.</creatorcontrib><creatorcontrib>Pint, B.</creatorcontrib><creatorcontrib>Youchison, D.</creatorcontrib><creatorcontrib>Smolentsev, S.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of fusion energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andruczyk, D.</au><au>Maingi, R.</au><au>Kessel, Chuck</au><au>Curreli, D.</au><au>Kolemen, E.</au><au>Canik, J.</au><au>Pint, B.</au><au>Youchison, D.</au><au>Smolentsev, S.</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Domestic Program for Liquid Metal PFC Research in Fusion</atitle><jtitle>Journal of fusion energy</jtitle><stitle>J Fusion Energ</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>441</spage><epage>447</epage><pages>441-447</pages><issn>0164-0313</issn><eissn>1572-9591</eissn><abstract>While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self-healing”. Following the Fusion Energy System Study on Liquid Metal Plasma Facing Components study that recently was completed by Kessel et al. (Fusion Sci Technnol 75:886, 2019) a domestic LM PFC design program has been initiated to develop reactor-relevant LM PFC concepts. This program seeks to evaluate LM PFC concepts for a Fusion Nuclear Science Facility (FNSF) or a Compact Pilot Plant via engineering design calculations, modeling of PMI and PFC components and laboratory experiments. The latter involves experiments in dedicated test stands and confinement devices and seeks to identify and answer open questions in LM PFC design. The new national LM PFC program is first investigating lithium as the plasma facing material for a flowing divertor PFC concept. Several flow speeds will be evaluated, ranging from ~ cm/s to m/s. The surface temperature will initially be held below the strongly evaporative limit in the first design; higher temperatures with strong evaporation will be considered in future concepts. Other topics of interest include: understanding of the hydrogen and helium interaction with the liquid lithium; single effect experiments on wetting, compatibility and embrittlement; and prototypical experiments for control and characterization of flowing LM. A path to plasma and future tokamak exposure of these concepts will be developed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10894-020-00259-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6613-3509</orcidid><orcidid>https://orcid.org/0000000166133509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0164-0313
ispartof Journal of fusion energy, 2020-12, Vol.39 (6), p.441-447
issn 0164-0313
1572-9591
language eng
recordid cdi_osti_scitechconnect_1821857
source Springer Journals; ProQuest Central
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Design
Design engineering
divertor
Energy Systems
Fusion
Heat transfer
Hydrogen embrittlement
Liquid lithium
liquid metal
Liquid metals
Lithium
Magnetic fusion
Metallic plasmas
Nuclear Energy
Nuclear Fusion
Nuclear reactors
Original Research
PFC
Physics
Physics and Astronomy
Plasma
Plasma Physics
Radiation
Sustainable Development
Temperature
Tokamaks
title A Domestic Program for Liquid Metal PFC Research in Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Domestic%20Program%20for%20Liquid%20Metal%20PFC%20Research%20in%20Fusion&rft.jtitle=Journal%20of%20fusion%20energy&rft.au=Andruczyk,%20D.&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2020-12-01&rft.volume=39&rft.issue=6&rft.spage=441&rft.epage=447&rft.pages=441-447&rft.issn=0164-0313&rft.eissn=1572-9591&rft_id=info:doi/10.1007/s10894-020-00259-0&rft_dat=%3Cgale_osti_%3EA714496799%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918307872&rft_id=info:pmid/&rft_galeid=A714496799&rfr_iscdi=true