Understanding why poly(acrylic acid) works: decarbonylation and cross-linking provide an ionically conductive passivation layer in silicon anodes

Poly(acrylic acid) (PAA) is commonly used as a binder for fabricating silicon (Si) anode active materials in lithium-ion batteries due to its useful properties including high polar solvent solubility, good rheology, and strong adhesive properties. However, the role and evolution of PAA during electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-10, Vol.9 (38), p.21929-21938
Hauptverfasser: Martin, Trevor R, Pekarek, Ryan T, Coyle, Jaclyn E, Schulze, Maxwell C, Neale, Nathan R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21938
container_issue 38
container_start_page 21929
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Martin, Trevor R
Pekarek, Ryan T
Coyle, Jaclyn E
Schulze, Maxwell C
Neale, Nathan R
description Poly(acrylic acid) (PAA) is commonly used as a binder for fabricating silicon (Si) anode active materials in lithium-ion batteries due to its useful properties including high polar solvent solubility, good rheology, and strong adhesive properties. However, the role and evolution of PAA during electrode fabrication, cycling, and calendar aging are not well understood. In this work, we reveal the evolution of PAA during electrode curing and relate its chemical change to the final electrode properties and performance. These studies are made possible using two types of in situ attenuated total reflectance-infrared Fourier transform (ATR-FTIR) spectroscopy: thermal ATR-FTIR to probe the cross-linking reaction, and ATR-FTIR spectroelectrochemistry of three-dimensional composite electrodes, a unique technique developed herein that probes the solvation dynamics of lithium ions at the silicon anode interface under electrochemical polarization. Specifically, we show that PAA undergoes a thermally-mediated, cross-linking decarbonylation reaction to form an ether-based network polymer. To show the importance of the polyether moieties, we synthesize partially esterified PAA analogues that do not undergo this cross-linking decarbonylation reaction and correlate the degree of cross-linking to half-cell performance metrics. Finally, we unveil the mechanism of the polyether binder performance through in situ ATR-FTIR spectroelectrochemistry and show that PAA acts as an interfacial material that conducts lithium-ions, limits solvent molecule access to the Si surface, and stabilizes the electrode against parasitic lithium inventory loss at high state of charge for an extended period of time. PAA undergoes decarbonylation during electrode curing to form polyethers that provide a silicon coating that assists Li-ion desolvation and conduction.
doi_str_mv 10.1039/d1ta04319f
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1820487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579127997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-d8fb4b1c67f68fb6bb9781c4d46c81ad27530a9afcfdc340efb9570714e97af53</originalsourceid><addsrcrecordid>eNpFkU9PxCAQxRujiUa9eDchelGTKrS0FG_G_4mJl91zQwdwWSuswK7px_Aby26NcmGS-b2ZBy_Ljgi-JLjkV5JEgWlJuN7K9gpc4ZxRXm__1U2zmx2GMMfpNBjXnO9l31MrlQ9RWGnsG_qaDWjh-uFMgB96A0iAkefoy_n3cI2kAuE7Z4deROMsSiIE3oWQ98a-r_UL71ZGqtRBCTAg-n5A4KxcQjQrhRYiBLMa1b0YlEfGomDSps04J1U4yHa06IM6_L33s-nD_eT2KX95fXy-vXnJgRIcc9nojnYEaqbrVNZdx1lDgEpaQ0OELFhVYsGFBi2hpFjpjlcMM0IVZ0JX5X52Ms51IZo2gIkKZsmGVRBb0hSYNixBpyOUHva5VCG2c7f0Nvlqi4pxUjDO19TFSG0-wyvdLrz5EH5oCW7X0bR3ZHKzieYhwccj7AP8cf_RlT8V9Y5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579127997</pqid></control><display><type>article</type><title>Understanding why poly(acrylic acid) works: decarbonylation and cross-linking provide an ionically conductive passivation layer in silicon anodes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Martin, Trevor R ; Pekarek, Ryan T ; Coyle, Jaclyn E ; Schulze, Maxwell C ; Neale, Nathan R</creator><creatorcontrib>Martin, Trevor R ; Pekarek, Ryan T ; Coyle, Jaclyn E ; Schulze, Maxwell C ; Neale, Nathan R</creatorcontrib><description>Poly(acrylic acid) (PAA) is commonly used as a binder for fabricating silicon (Si) anode active materials in lithium-ion batteries due to its useful properties including high polar solvent solubility, good rheology, and strong adhesive properties. However, the role and evolution of PAA during electrode fabrication, cycling, and calendar aging are not well understood. In this work, we reveal the evolution of PAA during electrode curing and relate its chemical change to the final electrode properties and performance. These studies are made possible using two types of in situ attenuated total reflectance-infrared Fourier transform (ATR-FTIR) spectroscopy: thermal ATR-FTIR to probe the cross-linking reaction, and ATR-FTIR spectroelectrochemistry of three-dimensional composite electrodes, a unique technique developed herein that probes the solvation dynamics of lithium ions at the silicon anode interface under electrochemical polarization. Specifically, we show that PAA undergoes a thermally-mediated, cross-linking decarbonylation reaction to form an ether-based network polymer. To show the importance of the polyether moieties, we synthesize partially esterified PAA analogues that do not undergo this cross-linking decarbonylation reaction and correlate the degree of cross-linking to half-cell performance metrics. Finally, we unveil the mechanism of the polyether binder performance through in situ ATR-FTIR spectroelectrochemistry and show that PAA acts as an interfacial material that conducts lithium-ions, limits solvent molecule access to the Si surface, and stabilizes the electrode against parasitic lithium inventory loss at high state of charge for an extended period of time. PAA undergoes decarbonylation during electrode curing to form polyethers that provide a silicon coating that assists Li-ion desolvation and conduction.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta04319f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acrylic acid ; Adhesive strength ; Aging ; Anodes ; Anodic polarization ; Batteries ; Crosslinking ; Electrochemistry ; Electrode polarization ; Electrodes ; Esterification ; Evolution ; Fabrication ; Fourier transforms ; Infrared spectroscopy ; Ions ; Lithium ; Lithium-ion batteries ; Performance measurement ; Polyacrylic acid ; Polymers ; Rechargeable batteries ; Rheological properties ; Rheology ; Silicon ; Solvation ; Solvents ; Three dimensional composites</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (38), p.21929-21938</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-d8fb4b1c67f68fb6bb9781c4d46c81ad27530a9afcfdc340efb9570714e97af53</citedby><cites>FETCH-LOGICAL-c410t-d8fb4b1c67f68fb6bb9781c4d46c81ad27530a9afcfdc340efb9570714e97af53</cites><orcidid>0000-0001-5654-1664 ; 0000-0001-8368-4054 ; 0000-0003-3494-5902 ; 0000-0001-5257-5293 ; 0000000183684054 ; 0000000152575293 ; 0000000156541664 ; 0000000334945902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1820487$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Trevor R</creatorcontrib><creatorcontrib>Pekarek, Ryan T</creatorcontrib><creatorcontrib>Coyle, Jaclyn E</creatorcontrib><creatorcontrib>Schulze, Maxwell C</creatorcontrib><creatorcontrib>Neale, Nathan R</creatorcontrib><title>Understanding why poly(acrylic acid) works: decarbonylation and cross-linking provide an ionically conductive passivation layer in silicon anodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Poly(acrylic acid) (PAA) is commonly used as a binder for fabricating silicon (Si) anode active materials in lithium-ion batteries due to its useful properties including high polar solvent solubility, good rheology, and strong adhesive properties. However, the role and evolution of PAA during electrode fabrication, cycling, and calendar aging are not well understood. In this work, we reveal the evolution of PAA during electrode curing and relate its chemical change to the final electrode properties and performance. These studies are made possible using two types of in situ attenuated total reflectance-infrared Fourier transform (ATR-FTIR) spectroscopy: thermal ATR-FTIR to probe the cross-linking reaction, and ATR-FTIR spectroelectrochemistry of three-dimensional composite electrodes, a unique technique developed herein that probes the solvation dynamics of lithium ions at the silicon anode interface under electrochemical polarization. Specifically, we show that PAA undergoes a thermally-mediated, cross-linking decarbonylation reaction to form an ether-based network polymer. To show the importance of the polyether moieties, we synthesize partially esterified PAA analogues that do not undergo this cross-linking decarbonylation reaction and correlate the degree of cross-linking to half-cell performance metrics. Finally, we unveil the mechanism of the polyether binder performance through in situ ATR-FTIR spectroelectrochemistry and show that PAA acts as an interfacial material that conducts lithium-ions, limits solvent molecule access to the Si surface, and stabilizes the electrode against parasitic lithium inventory loss at high state of charge for an extended period of time. PAA undergoes decarbonylation during electrode curing to form polyethers that provide a silicon coating that assists Li-ion desolvation and conduction.</description><subject>Acrylic acid</subject><subject>Adhesive strength</subject><subject>Aging</subject><subject>Anodes</subject><subject>Anodic polarization</subject><subject>Batteries</subject><subject>Crosslinking</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Esterification</subject><subject>Evolution</subject><subject>Fabrication</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Performance measurement</subject><subject>Polyacrylic acid</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Silicon</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Three dimensional composites</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkU9PxCAQxRujiUa9eDchelGTKrS0FG_G_4mJl91zQwdwWSuswK7px_Aby26NcmGS-b2ZBy_Ljgi-JLjkV5JEgWlJuN7K9gpc4ZxRXm__1U2zmx2GMMfpNBjXnO9l31MrlQ9RWGnsG_qaDWjh-uFMgB96A0iAkefoy_n3cI2kAuE7Z4deROMsSiIE3oWQ98a-r_UL71ZGqtRBCTAg-n5A4KxcQjQrhRYiBLMa1b0YlEfGomDSps04J1U4yHa06IM6_L33s-nD_eT2KX95fXy-vXnJgRIcc9nojnYEaqbrVNZdx1lDgEpaQ0OELFhVYsGFBi2hpFjpjlcMM0IVZ0JX5X52Ms51IZo2gIkKZsmGVRBb0hSYNixBpyOUHva5VCG2c7f0Nvlqi4pxUjDO19TFSG0-wyvdLrz5EH5oCW7X0bR3ZHKzieYhwccj7AP8cf_RlT8V9Y5w</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Martin, Trevor R</creator><creator>Pekarek, Ryan T</creator><creator>Coyle, Jaclyn E</creator><creator>Schulze, Maxwell C</creator><creator>Neale, Nathan R</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5654-1664</orcidid><orcidid>https://orcid.org/0000-0001-8368-4054</orcidid><orcidid>https://orcid.org/0000-0003-3494-5902</orcidid><orcidid>https://orcid.org/0000-0001-5257-5293</orcidid><orcidid>https://orcid.org/0000000183684054</orcidid><orcidid>https://orcid.org/0000000152575293</orcidid><orcidid>https://orcid.org/0000000156541664</orcidid><orcidid>https://orcid.org/0000000334945902</orcidid></search><sort><creationdate>20211005</creationdate><title>Understanding why poly(acrylic acid) works: decarbonylation and cross-linking provide an ionically conductive passivation layer in silicon anodes</title><author>Martin, Trevor R ; Pekarek, Ryan T ; Coyle, Jaclyn E ; Schulze, Maxwell C ; Neale, Nathan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-d8fb4b1c67f68fb6bb9781c4d46c81ad27530a9afcfdc340efb9570714e97af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acrylic acid</topic><topic>Adhesive strength</topic><topic>Aging</topic><topic>Anodes</topic><topic>Anodic polarization</topic><topic>Batteries</topic><topic>Crosslinking</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Esterification</topic><topic>Evolution</topic><topic>Fabrication</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Performance measurement</topic><topic>Polyacrylic acid</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Silicon</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Three dimensional composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Trevor R</creatorcontrib><creatorcontrib>Pekarek, Ryan T</creatorcontrib><creatorcontrib>Coyle, Jaclyn E</creatorcontrib><creatorcontrib>Schulze, Maxwell C</creatorcontrib><creatorcontrib>Neale, Nathan R</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Trevor R</au><au>Pekarek, Ryan T</au><au>Coyle, Jaclyn E</au><au>Schulze, Maxwell C</au><au>Neale, Nathan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding why poly(acrylic acid) works: decarbonylation and cross-linking provide an ionically conductive passivation layer in silicon anodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-10-05</date><risdate>2021</risdate><volume>9</volume><issue>38</issue><spage>21929</spage><epage>21938</epage><pages>21929-21938</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Poly(acrylic acid) (PAA) is commonly used as a binder for fabricating silicon (Si) anode active materials in lithium-ion batteries due to its useful properties including high polar solvent solubility, good rheology, and strong adhesive properties. However, the role and evolution of PAA during electrode fabrication, cycling, and calendar aging are not well understood. In this work, we reveal the evolution of PAA during electrode curing and relate its chemical change to the final electrode properties and performance. These studies are made possible using two types of in situ attenuated total reflectance-infrared Fourier transform (ATR-FTIR) spectroscopy: thermal ATR-FTIR to probe the cross-linking reaction, and ATR-FTIR spectroelectrochemistry of three-dimensional composite electrodes, a unique technique developed herein that probes the solvation dynamics of lithium ions at the silicon anode interface under electrochemical polarization. Specifically, we show that PAA undergoes a thermally-mediated, cross-linking decarbonylation reaction to form an ether-based network polymer. To show the importance of the polyether moieties, we synthesize partially esterified PAA analogues that do not undergo this cross-linking decarbonylation reaction and correlate the degree of cross-linking to half-cell performance metrics. Finally, we unveil the mechanism of the polyether binder performance through in situ ATR-FTIR spectroelectrochemistry and show that PAA acts as an interfacial material that conducts lithium-ions, limits solvent molecule access to the Si surface, and stabilizes the electrode against parasitic lithium inventory loss at high state of charge for an extended period of time. PAA undergoes decarbonylation during electrode curing to form polyethers that provide a silicon coating that assists Li-ion desolvation and conduction.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta04319f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5654-1664</orcidid><orcidid>https://orcid.org/0000-0001-8368-4054</orcidid><orcidid>https://orcid.org/0000-0003-3494-5902</orcidid><orcidid>https://orcid.org/0000-0001-5257-5293</orcidid><orcidid>https://orcid.org/0000000183684054</orcidid><orcidid>https://orcid.org/0000000152575293</orcidid><orcidid>https://orcid.org/0000000156541664</orcidid><orcidid>https://orcid.org/0000000334945902</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (38), p.21929-21938
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_1820487
source Royal Society Of Chemistry Journals 2008-
subjects Acrylic acid
Adhesive strength
Aging
Anodes
Anodic polarization
Batteries
Crosslinking
Electrochemistry
Electrode polarization
Electrodes
Esterification
Evolution
Fabrication
Fourier transforms
Infrared spectroscopy
Ions
Lithium
Lithium-ion batteries
Performance measurement
Polyacrylic acid
Polymers
Rechargeable batteries
Rheological properties
Rheology
Silicon
Solvation
Solvents
Three dimensional composites
title Understanding why poly(acrylic acid) works: decarbonylation and cross-linking provide an ionically conductive passivation layer in silicon anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20why%20poly(acrylic%20acid)%20works:%20decarbonylation%20and%20cross-linking%20provide%20an%20ionically%20conductive%20passivation%20layer%20in%20silicon%20anodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Martin,%20Trevor%20R&rft.date=2021-10-05&rft.volume=9&rft.issue=38&rft.spage=21929&rft.epage=21938&rft.pages=21929-21938&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta04319f&rft_dat=%3Cproquest_osti_%3E2579127997%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579127997&rft_id=info:pmid/&rfr_iscdi=true