Laser‐Irradiated Holey Graphene‐Supported Single‐Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction
Single‐atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs thro...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-10, Vol.11 (40), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Khan, Kishwar Liu, Tangchao Arif, Muhammad Yan, Xingxu Hossain, Md Delowar Rehman, Faisal Zhou, Sheng Yang, Jing Sun, Chengjun Bae, Sang‐Hoon Kim, Jeehwan Amine, Khalil Pan, Xiaoqing Luo, Zhengtang |
description | Single‐atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen‐doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co‐NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm−2 towards HER. Similarly, the Fe‐NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration‐corrected scanning transmission electron microscopy, and X‐ray absorption near‐edge structure and extended X‐ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co‐NMGO shows the optimum free reaction energy of −0.17 eV at −0.1 V for HER, and Fe‐NMGO has less limiting potential than that of Co‐NMGO for ORR case. This work opens a new approach towards the synthesis of SAC and its mechanistic understandings.
Laser‐irradiation is a used to prepare a porous structure for energy conversion and storage applications. The carbon surface dangling bonds are utilized to extract a single‐atom and form a dual electrocatalyst for the hydrogen evolution reaction and oxygen reduction reaction, and eventually for Zn–air batteries. Experimental results are verified via a grand canonical potential kinetics model through density functional theory. |
doi_str_mv | 10.1002/aenm.202101619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1820222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586301277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3849-b6c007a863c7603c88e710c54920912d02a131a93024d93c48faccfe640f99bb3</originalsourceid><addsrcrecordid>eNqFkUFPwjAUxxejiQS5el70DL62Y1uPhKCQoCSi56Z0HYyMdraduJsfwc_oJ7HLDB7t5TX_9_u_Nu8fBNcIRggA33GpDiMMGAGKET0Ler5EwziN4Px0J_gyGFi7B38iioCQXuCW3Erz_fm1MIZnBXcyC-e6lE34YHi1k0r63rquKm3a1rpQ27KVJk4fwil3vGysC50-cpPZcN5kRm-lCmfvuqxdoVXIVRauPppWfJZZLVrxKrjIeWnl4Lf2g9f72ct0PlyuHhbTyXIoSBrR4SYWAAlPYyKSGIhIU5kgEOOIYqAIZ4A5IohTAjjKKBFRmnMhchlHkFO62ZB-cNPN1dYVzIrCSbETWikpHEOpXxfGHrrtoMrot1pax_a6Nsr_i-GxfxsQThJPjTpKGG2tkTmrTHHgpmEIWJsAaxNgpwS8gXaGY-G3-Q_NJrOnxz_vDzX3jSs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586301277</pqid></control><display><type>article</type><title>Laser‐Irradiated Holey Graphene‐Supported Single‐Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Khan, Kishwar ; Liu, Tangchao ; Arif, Muhammad ; Yan, Xingxu ; Hossain, Md Delowar ; Rehman, Faisal ; Zhou, Sheng ; Yang, Jing ; Sun, Chengjun ; Bae, Sang‐Hoon ; Kim, Jeehwan ; Amine, Khalil ; Pan, Xiaoqing ; Luo, Zhengtang</creator><creatorcontrib>Khan, Kishwar ; Liu, Tangchao ; Arif, Muhammad ; Yan, Xingxu ; Hossain, Md Delowar ; Rehman, Faisal ; Zhou, Sheng ; Yang, Jing ; Sun, Chengjun ; Bae, Sang‐Hoon ; Kim, Jeehwan ; Amine, Khalil ; Pan, Xiaoqing ; Luo, Zhengtang</creatorcontrib><description>Single‐atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen‐doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co‐NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm−2 towards HER. Similarly, the Fe‐NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration‐corrected scanning transmission electron microscopy, and X‐ray absorption near‐edge structure and extended X‐ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co‐NMGO shows the optimum free reaction energy of −0.17 eV at −0.1 V for HER, and Fe‐NMGO has less limiting potential than that of Co‐NMGO for ORR case. This work opens a new approach towards the synthesis of SAC and its mechanistic understandings.
Laser‐irradiation is a used to prepare a porous structure for energy conversion and storage applications. The carbon surface dangling bonds are utilized to extract a single‐atom and form a dual electrocatalyst for the hydrogen evolution reaction and oxygen reduction reaction, and eventually for Zn–air batteries. Experimental results are verified via a grand canonical potential kinetics model through density functional theory.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202101619</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Catalytic activity ; Cobalt ; dangling bonds ; Density functional theory ; Electrocatalysts ; Fine structure ; Foamed metals ; grand canonical potential kinetics ; Graphene ; Hydrogen evolution reactions ; Iron ; Irradiation ; laser irradiation ; Metal foams ; nanocarbon support ; Oxygen reduction reactions ; porous structures ; Scanning transmission electron microscopy ; Single atom catalysts</subject><ispartof>Advanced energy materials, 2021-10, Vol.11 (40), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3849-b6c007a863c7603c88e710c54920912d02a131a93024d93c48faccfe640f99bb3</citedby><cites>FETCH-LOGICAL-c3849-b6c007a863c7603c88e710c54920912d02a131a93024d93c48faccfe640f99bb3</cites><orcidid>0000-0002-5134-9240 ; 0000000251349240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202101619$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202101619$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1820222$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Kishwar</creatorcontrib><creatorcontrib>Liu, Tangchao</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Hossain, Md Delowar</creatorcontrib><creatorcontrib>Rehman, Faisal</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Bae, Sang‐Hoon</creatorcontrib><creatorcontrib>Kim, Jeehwan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><title>Laser‐Irradiated Holey Graphene‐Supported Single‐Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</title><title>Advanced energy materials</title><description>Single‐atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen‐doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co‐NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm−2 towards HER. Similarly, the Fe‐NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration‐corrected scanning transmission electron microscopy, and X‐ray absorption near‐edge structure and extended X‐ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co‐NMGO shows the optimum free reaction energy of −0.17 eV at −0.1 V for HER, and Fe‐NMGO has less limiting potential than that of Co‐NMGO for ORR case. This work opens a new approach towards the synthesis of SAC and its mechanistic understandings.
Laser‐irradiation is a used to prepare a porous structure for energy conversion and storage applications. The carbon surface dangling bonds are utilized to extract a single‐atom and form a dual electrocatalyst for the hydrogen evolution reaction and oxygen reduction reaction, and eventually for Zn–air batteries. Experimental results are verified via a grand canonical potential kinetics model through density functional theory.</description><subject>Absorption</subject><subject>Catalytic activity</subject><subject>Cobalt</subject><subject>dangling bonds</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Fine structure</subject><subject>Foamed metals</subject><subject>grand canonical potential kinetics</subject><subject>Graphene</subject><subject>Hydrogen evolution reactions</subject><subject>Iron</subject><subject>Irradiation</subject><subject>laser irradiation</subject><subject>Metal foams</subject><subject>nanocarbon support</subject><subject>Oxygen reduction reactions</subject><subject>porous structures</subject><subject>Scanning transmission electron microscopy</subject><subject>Single atom catalysts</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUFPwjAUxxejiQS5el70DL62Y1uPhKCQoCSi56Z0HYyMdraduJsfwc_oJ7HLDB7t5TX_9_u_Nu8fBNcIRggA33GpDiMMGAGKET0Ler5EwziN4Px0J_gyGFi7B38iioCQXuCW3Erz_fm1MIZnBXcyC-e6lE34YHi1k0r63rquKm3a1rpQ27KVJk4fwil3vGysC50-cpPZcN5kRm-lCmfvuqxdoVXIVRauPppWfJZZLVrxKrjIeWnl4Lf2g9f72ct0PlyuHhbTyXIoSBrR4SYWAAlPYyKSGIhIU5kgEOOIYqAIZ4A5IohTAjjKKBFRmnMhchlHkFO62ZB-cNPN1dYVzIrCSbETWikpHEOpXxfGHrrtoMrot1pax_a6Nsr_i-GxfxsQThJPjTpKGG2tkTmrTHHgpmEIWJsAaxNgpwS8gXaGY-G3-Q_NJrOnxz_vDzX3jSs</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Khan, Kishwar</creator><creator>Liu, Tangchao</creator><creator>Arif, Muhammad</creator><creator>Yan, Xingxu</creator><creator>Hossain, Md Delowar</creator><creator>Rehman, Faisal</creator><creator>Zhou, Sheng</creator><creator>Yang, Jing</creator><creator>Sun, Chengjun</creator><creator>Bae, Sang‐Hoon</creator><creator>Kim, Jeehwan</creator><creator>Amine, Khalil</creator><creator>Pan, Xiaoqing</creator><creator>Luo, Zhengtang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5134-9240</orcidid><orcidid>https://orcid.org/0000000251349240</orcidid></search><sort><creationdate>20211001</creationdate><title>Laser‐Irradiated Holey Graphene‐Supported Single‐Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</title><author>Khan, Kishwar ; Liu, Tangchao ; Arif, Muhammad ; Yan, Xingxu ; Hossain, Md Delowar ; Rehman, Faisal ; Zhou, Sheng ; Yang, Jing ; Sun, Chengjun ; Bae, Sang‐Hoon ; Kim, Jeehwan ; Amine, Khalil ; Pan, Xiaoqing ; Luo, Zhengtang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3849-b6c007a863c7603c88e710c54920912d02a131a93024d93c48faccfe640f99bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Catalytic activity</topic><topic>Cobalt</topic><topic>dangling bonds</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Fine structure</topic><topic>Foamed metals</topic><topic>grand canonical potential kinetics</topic><topic>Graphene</topic><topic>Hydrogen evolution reactions</topic><topic>Iron</topic><topic>Irradiation</topic><topic>laser irradiation</topic><topic>Metal foams</topic><topic>nanocarbon support</topic><topic>Oxygen reduction reactions</topic><topic>porous structures</topic><topic>Scanning transmission electron microscopy</topic><topic>Single atom catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Kishwar</creatorcontrib><creatorcontrib>Liu, Tangchao</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Hossain, Md Delowar</creatorcontrib><creatorcontrib>Rehman, Faisal</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Bae, Sang‐Hoon</creatorcontrib><creatorcontrib>Kim, Jeehwan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Kishwar</au><au>Liu, Tangchao</au><au>Arif, Muhammad</au><au>Yan, Xingxu</au><au>Hossain, Md Delowar</au><au>Rehman, Faisal</au><au>Zhou, Sheng</au><au>Yang, Jing</au><au>Sun, Chengjun</au><au>Bae, Sang‐Hoon</au><au>Kim, Jeehwan</au><au>Amine, Khalil</au><au>Pan, Xiaoqing</au><au>Luo, Zhengtang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser‐Irradiated Holey Graphene‐Supported Single‐Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</atitle><jtitle>Advanced energy materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>11</volume><issue>40</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Single‐atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen‐doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co‐NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm−2 towards HER. Similarly, the Fe‐NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration‐corrected scanning transmission electron microscopy, and X‐ray absorption near‐edge structure and extended X‐ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co‐NMGO shows the optimum free reaction energy of −0.17 eV at −0.1 V for HER, and Fe‐NMGO has less limiting potential than that of Co‐NMGO for ORR case. This work opens a new approach towards the synthesis of SAC and its mechanistic understandings.
Laser‐irradiation is a used to prepare a porous structure for energy conversion and storage applications. The carbon surface dangling bonds are utilized to extract a single‐atom and form a dual electrocatalyst for the hydrogen evolution reaction and oxygen reduction reaction, and eventually for Zn–air batteries. Experimental results are verified via a grand canonical potential kinetics model through density functional theory.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202101619</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5134-9240</orcidid><orcidid>https://orcid.org/0000000251349240</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-10, Vol.11 (40), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1820222 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption Catalytic activity Cobalt dangling bonds Density functional theory Electrocatalysts Fine structure Foamed metals grand canonical potential kinetics Graphene Hydrogen evolution reactions Iron Irradiation laser irradiation Metal foams nanocarbon support Oxygen reduction reactions porous structures Scanning transmission electron microscopy Single atom catalysts |
title | Laser‐Irradiated Holey Graphene‐Supported Single‐Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%E2%80%90Irradiated%20Holey%20Graphene%E2%80%90Supported%20Single%E2%80%90Atom%20Catalyst%20towards%20Hydrogen%20Evolution%20and%20Oxygen%20Reduction&rft.jtitle=Advanced%20energy%20materials&rft.au=Khan,%20Kishwar&rft.date=2021-10-01&rft.volume=11&rft.issue=40&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202101619&rft_dat=%3Cproquest_osti_%3E2586301277%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586301277&rft_id=info:pmid/&rfr_iscdi=true |