Sorting for secreted molecule production using a biosensor-in-microdroplet approach

Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (36), p.1-10, Article 2106818118
Hauptverfasser: Bowman, Emily K., Wagner, James M., Yuan, Shuo-Fu, Deaner, Matthew, Palmer, Claire M., D’Oelsnitz, Simon, Cordova, Lauren, Li, Xin, Craig, Frank F., Alper, Hal S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 36
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Bowman, Emily K.
Wagner, James M.
Yuan, Shuo-Fu
Deaner, Matthew
Palmer, Claire M.
D’Oelsnitz, Simon
Cordova, Lauren
Li, Xin
Craig, Frank F.
Alper, Hal S.
description Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.
doi_str_mv 10.1073/pnas.2106818118
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1819978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075412</jstor_id><sourcerecordid>27075412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-4f99be0b5557fbd765ec3ed7b793a0b4a08b79f06f00703b61a32a6210cde77c3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS0EokvhzAkUcUVpxx-JnQsSWvFRqRKHlrPlOJOuq6wd2Q6I_x5HKQvc6ost-fdm5s0j5DWFCwqSX87epAtGoVVUUaqekB2Fjtat6OAp2QEwWSvBxBl5kdI9AHSNgufkjAshG0bVjtzchJidv6vGEKuENmLGoTqGCe0yYTXHMCw2u-CrJa2YqXoXEvoUYu18fXS2EDHME-bKzAU39vCSPBvNlPDVw31Ovn_-dLv_Wl9_-3K1_3hdWyFYrsXYdT1C3zSNHPtBtg1ajoPsZccN9MKAKs8R2hFAAu9bajgzbXFrB5TS8nPyYas7L_0RB4s-RzPpObqjib90ME7__-PdQd-FH1oJzhsGpcC7rUBI2elkXUZ7sMF7tFmXhXadVAW63KDiNKWI46kBBb2GoNcQ9N8QiuLtv3Od-D9bL8D7DfiJfRhLX_QWTxisdhvKW1hPV2j1eHrvslnj2ofF5yJ9s0nvUw7xpGESZCMo478BZFCv9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sorting for secreted molecule production using a biosensor-in-microdroplet approach</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bowman, Emily K. ; Wagner, James M. ; Yuan, Shuo-Fu ; Deaner, Matthew ; Palmer, Claire M. ; D’Oelsnitz, Simon ; Cordova, Lauren ; Li, Xin ; Craig, Frank F. ; Alper, Hal S.</creator><creatorcontrib>Bowman, Emily K. ; Wagner, James M. ; Yuan, Shuo-Fu ; Deaner, Matthew ; Palmer, Claire M. ; D’Oelsnitz, Simon ; Cordova, Lauren ; Li, Xin ; Craig, Frank F. ; Alper, Hal S.</creatorcontrib><description>Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2106818118</identifier><identifier>PMID: 34475218</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Biological Sciences ; Biosensing Techniques ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fluorescence ; High-Throughput Screening Assays - methods ; Levodopa - biosynthesis ; Microfluidics - methods ; Multidisciplinary Sciences ; Mutagenesis ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Yarrowia - genetics ; Yarrowia - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (36), p.1-10, Article 2106818118</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000705136000009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c442t-4f99be0b5557fbd765ec3ed7b793a0b4a08b79f06f00703b61a32a6210cde77c3</citedby><cites>FETCH-LOGICAL-c442t-4f99be0b5557fbd765ec3ed7b793a0b4a08b79f06f00703b61a32a6210cde77c3</cites><orcidid>0000-0002-2896-3285 ; 0000-0002-5505-1898 ; 0000-0002-1581-159X ; 0000-0002-8246-8605 ; 0000-0001-7512-9157 ; 0000000255051898 ; 0000000228963285 ; 0000000175129157 ; 000000021581159X ; 0000000282468605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075412$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075412$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,39263,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34475218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1819978$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowman, Emily K.</creatorcontrib><creatorcontrib>Wagner, James M.</creatorcontrib><creatorcontrib>Yuan, Shuo-Fu</creatorcontrib><creatorcontrib>Deaner, Matthew</creatorcontrib><creatorcontrib>Palmer, Claire M.</creatorcontrib><creatorcontrib>D’Oelsnitz, Simon</creatorcontrib><creatorcontrib>Cordova, Lauren</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Craig, Frank F.</creatorcontrib><creatorcontrib>Alper, Hal S.</creatorcontrib><title>Sorting for secreted molecule production using a biosensor-in-microdroplet approach</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.</description><subject>Biological Sciences</subject><subject>Biosensing Techniques</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fluorescence</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Levodopa - biosynthesis</subject><subject>Microfluidics - methods</subject><subject>Multidisciplinary Sciences</subject><subject>Mutagenesis</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Yarrowia - genetics</subject><subject>Yarrowia - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxS0EokvhzAkUcUVpxx-JnQsSWvFRqRKHlrPlOJOuq6wd2Q6I_x5HKQvc6ost-fdm5s0j5DWFCwqSX87epAtGoVVUUaqekB2Fjtat6OAp2QEwWSvBxBl5kdI9AHSNgufkjAshG0bVjtzchJidv6vGEKuENmLGoTqGCe0yYTXHMCw2u-CrJa2YqXoXEvoUYu18fXS2EDHME-bKzAU39vCSPBvNlPDVw31Ovn_-dLv_Wl9_-3K1_3hdWyFYrsXYdT1C3zSNHPtBtg1ajoPsZccN9MKAKs8R2hFAAu9bajgzbXFrB5TS8nPyYas7L_0RB4s-RzPpObqjib90ME7__-PdQd-FH1oJzhsGpcC7rUBI2elkXUZ7sMF7tFmXhXadVAW63KDiNKWI46kBBb2GoNcQ9N8QiuLtv3Od-D9bL8D7DfiJfRhLX_QWTxisdhvKW1hPV2j1eHrvslnj2ofF5yJ9s0nvUw7xpGESZCMo478BZFCv9w</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>Bowman, Emily K.</creator><creator>Wagner, James M.</creator><creator>Yuan, Shuo-Fu</creator><creator>Deaner, Matthew</creator><creator>Palmer, Claire M.</creator><creator>D’Oelsnitz, Simon</creator><creator>Cordova, Lauren</creator><creator>Li, Xin</creator><creator>Craig, Frank F.</creator><creator>Alper, Hal S.</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2896-3285</orcidid><orcidid>https://orcid.org/0000-0002-5505-1898</orcidid><orcidid>https://orcid.org/0000-0002-1581-159X</orcidid><orcidid>https://orcid.org/0000-0002-8246-8605</orcidid><orcidid>https://orcid.org/0000-0001-7512-9157</orcidid><orcidid>https://orcid.org/0000000255051898</orcidid><orcidid>https://orcid.org/0000000228963285</orcidid><orcidid>https://orcid.org/0000000175129157</orcidid><orcidid>https://orcid.org/000000021581159X</orcidid><orcidid>https://orcid.org/0000000282468605</orcidid></search><sort><creationdate>20210907</creationdate><title>Sorting for secreted molecule production using a biosensor-in-microdroplet approach</title><author>Bowman, Emily K. ; Wagner, James M. ; Yuan, Shuo-Fu ; Deaner, Matthew ; Palmer, Claire M. ; D’Oelsnitz, Simon ; Cordova, Lauren ; Li, Xin ; Craig, Frank F. ; Alper, Hal S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-4f99be0b5557fbd765ec3ed7b793a0b4a08b79f06f00703b61a32a6210cde77c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological Sciences</topic><topic>Biosensing Techniques</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fluorescence</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Levodopa - biosynthesis</topic><topic>Microfluidics - methods</topic><topic>Multidisciplinary Sciences</topic><topic>Mutagenesis</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Yarrowia - genetics</topic><topic>Yarrowia - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowman, Emily K.</creatorcontrib><creatorcontrib>Wagner, James M.</creatorcontrib><creatorcontrib>Yuan, Shuo-Fu</creatorcontrib><creatorcontrib>Deaner, Matthew</creatorcontrib><creatorcontrib>Palmer, Claire M.</creatorcontrib><creatorcontrib>D’Oelsnitz, Simon</creatorcontrib><creatorcontrib>Cordova, Lauren</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Craig, Frank F.</creatorcontrib><creatorcontrib>Alper, Hal S.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowman, Emily K.</au><au>Wagner, James M.</au><au>Yuan, Shuo-Fu</au><au>Deaner, Matthew</au><au>Palmer, Claire M.</au><au>D’Oelsnitz, Simon</au><au>Cordova, Lauren</au><au>Li, Xin</au><au>Craig, Frank F.</au><au>Alper, Hal S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sorting for secreted molecule production using a biosensor-in-microdroplet approach</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-07</date><risdate>2021</risdate><volume>118</volume><issue>36</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>2106818118</artnum><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>34475218</pmid><doi>10.1073/pnas.2106818118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2896-3285</orcidid><orcidid>https://orcid.org/0000-0002-5505-1898</orcidid><orcidid>https://orcid.org/0000-0002-1581-159X</orcidid><orcidid>https://orcid.org/0000-0002-8246-8605</orcidid><orcidid>https://orcid.org/0000-0001-7512-9157</orcidid><orcidid>https://orcid.org/0000000255051898</orcidid><orcidid>https://orcid.org/0000000228963285</orcidid><orcidid>https://orcid.org/0000000175129157</orcidid><orcidid>https://orcid.org/000000021581159X</orcidid><orcidid>https://orcid.org/0000000282468605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (36), p.1-10, Article 2106818118
issn 0027-8424
1091-6490
language eng
recordid cdi_osti_scitechconnect_1819978
source MEDLINE; JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Biosensing Techniques
Escherichia coli - genetics
Escherichia coli - metabolism
Fluorescence
High-Throughput Screening Assays - methods
Levodopa - biosynthesis
Microfluidics - methods
Multidisciplinary Sciences
Mutagenesis
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Science & Technology
Science & Technology - Other Topics
Yarrowia - genetics
Yarrowia - metabolism
title Sorting for secreted molecule production using a biosensor-in-microdroplet approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sorting%20for%20secreted%20molecule%20production%20using%20a%20biosensor-in-microdroplet%20approach&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bowman,%20Emily%20K.&rft.date=2021-09-07&rft.volume=118&rft.issue=36&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=2106818118&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2106818118&rft_dat=%3Cjstor_osti_%3E27075412%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34475218&rft_jstor_id=27075412&rfr_iscdi=true