Sorting for secreted molecule production using a biosensor-in-microdroplet approach
Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (36), p.1-10, Article 2106818118 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 36 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Bowman, Emily K. Wagner, James M. Yuan, Shuo-Fu Deaner, Matthew Palmer, Claire M. D’Oelsnitz, Simon Cordova, Lauren Li, Xin Craig, Frank F. Alper, Hal S. |
description | Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion. |
doi_str_mv | 10.1073/pnas.2106818118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1819978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075412</jstor_id><sourcerecordid>27075412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-4f99be0b5557fbd765ec3ed7b793a0b4a08b79f06f00703b61a32a6210cde77c3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS0EokvhzAkUcUVpxx-JnQsSWvFRqRKHlrPlOJOuq6wd2Q6I_x5HKQvc6ost-fdm5s0j5DWFCwqSX87epAtGoVVUUaqekB2Fjtat6OAp2QEwWSvBxBl5kdI9AHSNgufkjAshG0bVjtzchJidv6vGEKuENmLGoTqGCe0yYTXHMCw2u-CrJa2YqXoXEvoUYu18fXS2EDHME-bKzAU39vCSPBvNlPDVw31Ovn_-dLv_Wl9_-3K1_3hdWyFYrsXYdT1C3zSNHPtBtg1ajoPsZccN9MKAKs8R2hFAAu9bajgzbXFrB5TS8nPyYas7L_0RB4s-RzPpObqjib90ME7__-PdQd-FH1oJzhsGpcC7rUBI2elkXUZ7sMF7tFmXhXadVAW63KDiNKWI46kBBb2GoNcQ9N8QiuLtv3Od-D9bL8D7DfiJfRhLX_QWTxisdhvKW1hPV2j1eHrvslnj2ofF5yJ9s0nvUw7xpGESZCMo478BZFCv9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sorting for secreted molecule production using a biosensor-in-microdroplet approach</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bowman, Emily K. ; Wagner, James M. ; Yuan, Shuo-Fu ; Deaner, Matthew ; Palmer, Claire M. ; D’Oelsnitz, Simon ; Cordova, Lauren ; Li, Xin ; Craig, Frank F. ; Alper, Hal S.</creator><creatorcontrib>Bowman, Emily K. ; Wagner, James M. ; Yuan, Shuo-Fu ; Deaner, Matthew ; Palmer, Claire M. ; D’Oelsnitz, Simon ; Cordova, Lauren ; Li, Xin ; Craig, Frank F. ; Alper, Hal S.</creatorcontrib><description>Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2106818118</identifier><identifier>PMID: 34475218</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Biological Sciences ; Biosensing Techniques ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fluorescence ; High-Throughput Screening Assays - methods ; Levodopa - biosynthesis ; Microfluidics - methods ; Multidisciplinary Sciences ; Mutagenesis ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Science & Technology ; Science & Technology - Other Topics ; Yarrowia - genetics ; Yarrowia - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (36), p.1-10, Article 2106818118</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000705136000009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c442t-4f99be0b5557fbd765ec3ed7b793a0b4a08b79f06f00703b61a32a6210cde77c3</citedby><cites>FETCH-LOGICAL-c442t-4f99be0b5557fbd765ec3ed7b793a0b4a08b79f06f00703b61a32a6210cde77c3</cites><orcidid>0000-0002-2896-3285 ; 0000-0002-5505-1898 ; 0000-0002-1581-159X ; 0000-0002-8246-8605 ; 0000-0001-7512-9157 ; 0000000255051898 ; 0000000228963285 ; 0000000175129157 ; 000000021581159X ; 0000000282468605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075412$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075412$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,39263,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34475218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1819978$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowman, Emily K.</creatorcontrib><creatorcontrib>Wagner, James M.</creatorcontrib><creatorcontrib>Yuan, Shuo-Fu</creatorcontrib><creatorcontrib>Deaner, Matthew</creatorcontrib><creatorcontrib>Palmer, Claire M.</creatorcontrib><creatorcontrib>D’Oelsnitz, Simon</creatorcontrib><creatorcontrib>Cordova, Lauren</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Craig, Frank F.</creatorcontrib><creatorcontrib>Alper, Hal S.</creatorcontrib><title>Sorting for secreted molecule production using a biosensor-in-microdroplet approach</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.</description><subject>Biological Sciences</subject><subject>Biosensing Techniques</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fluorescence</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Levodopa - biosynthesis</subject><subject>Microfluidics - methods</subject><subject>Multidisciplinary Sciences</subject><subject>Mutagenesis</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Yarrowia - genetics</subject><subject>Yarrowia - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxS0EokvhzAkUcUVpxx-JnQsSWvFRqRKHlrPlOJOuq6wd2Q6I_x5HKQvc6ost-fdm5s0j5DWFCwqSX87epAtGoVVUUaqekB2Fjtat6OAp2QEwWSvBxBl5kdI9AHSNgufkjAshG0bVjtzchJidv6vGEKuENmLGoTqGCe0yYTXHMCw2u-CrJa2YqXoXEvoUYu18fXS2EDHME-bKzAU39vCSPBvNlPDVw31Ovn_-dLv_Wl9_-3K1_3hdWyFYrsXYdT1C3zSNHPtBtg1ajoPsZccN9MKAKs8R2hFAAu9bajgzbXFrB5TS8nPyYas7L_0RB4s-RzPpObqjib90ME7__-PdQd-FH1oJzhsGpcC7rUBI2elkXUZ7sMF7tFmXhXadVAW63KDiNKWI46kBBb2GoNcQ9N8QiuLtv3Od-D9bL8D7DfiJfRhLX_QWTxisdhvKW1hPV2j1eHrvslnj2ofF5yJ9s0nvUw7xpGESZCMo478BZFCv9w</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>Bowman, Emily K.</creator><creator>Wagner, James M.</creator><creator>Yuan, Shuo-Fu</creator><creator>Deaner, Matthew</creator><creator>Palmer, Claire M.</creator><creator>D’Oelsnitz, Simon</creator><creator>Cordova, Lauren</creator><creator>Li, Xin</creator><creator>Craig, Frank F.</creator><creator>Alper, Hal S.</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2896-3285</orcidid><orcidid>https://orcid.org/0000-0002-5505-1898</orcidid><orcidid>https://orcid.org/0000-0002-1581-159X</orcidid><orcidid>https://orcid.org/0000-0002-8246-8605</orcidid><orcidid>https://orcid.org/0000-0001-7512-9157</orcidid><orcidid>https://orcid.org/0000000255051898</orcidid><orcidid>https://orcid.org/0000000228963285</orcidid><orcidid>https://orcid.org/0000000175129157</orcidid><orcidid>https://orcid.org/000000021581159X</orcidid><orcidid>https://orcid.org/0000000282468605</orcidid></search><sort><creationdate>20210907</creationdate><title>Sorting for secreted molecule production using a biosensor-in-microdroplet approach</title><author>Bowman, Emily K. ; Wagner, James M. ; Yuan, Shuo-Fu ; Deaner, Matthew ; Palmer, Claire M. ; D’Oelsnitz, Simon ; Cordova, Lauren ; Li, Xin ; Craig, Frank F. ; Alper, Hal S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-4f99be0b5557fbd765ec3ed7b793a0b4a08b79f06f00703b61a32a6210cde77c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological Sciences</topic><topic>Biosensing Techniques</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fluorescence</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Levodopa - biosynthesis</topic><topic>Microfluidics - methods</topic><topic>Multidisciplinary Sciences</topic><topic>Mutagenesis</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Yarrowia - genetics</topic><topic>Yarrowia - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowman, Emily K.</creatorcontrib><creatorcontrib>Wagner, James M.</creatorcontrib><creatorcontrib>Yuan, Shuo-Fu</creatorcontrib><creatorcontrib>Deaner, Matthew</creatorcontrib><creatorcontrib>Palmer, Claire M.</creatorcontrib><creatorcontrib>D’Oelsnitz, Simon</creatorcontrib><creatorcontrib>Cordova, Lauren</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Craig, Frank F.</creatorcontrib><creatorcontrib>Alper, Hal S.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowman, Emily K.</au><au>Wagner, James M.</au><au>Yuan, Shuo-Fu</au><au>Deaner, Matthew</au><au>Palmer, Claire M.</au><au>D’Oelsnitz, Simon</au><au>Cordova, Lauren</au><au>Li, Xin</au><au>Craig, Frank F.</au><au>Alper, Hal S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sorting for secreted molecule production using a biosensor-in-microdroplet approach</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-07</date><risdate>2021</risdate><volume>118</volume><issue>36</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>2106818118</artnum><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>34475218</pmid><doi>10.1073/pnas.2106818118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2896-3285</orcidid><orcidid>https://orcid.org/0000-0002-5505-1898</orcidid><orcidid>https://orcid.org/0000-0002-1581-159X</orcidid><orcidid>https://orcid.org/0000-0002-8246-8605</orcidid><orcidid>https://orcid.org/0000-0001-7512-9157</orcidid><orcidid>https://orcid.org/0000000255051898</orcidid><orcidid>https://orcid.org/0000000228963285</orcidid><orcidid>https://orcid.org/0000000175129157</orcidid><orcidid>https://orcid.org/000000021581159X</orcidid><orcidid>https://orcid.org/0000000282468605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (36), p.1-10, Article 2106818118 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_osti_scitechconnect_1819978 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Biosensing Techniques Escherichia coli - genetics Escherichia coli - metabolism Fluorescence High-Throughput Screening Assays - methods Levodopa - biosynthesis Microfluidics - methods Multidisciplinary Sciences Mutagenesis Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Science & Technology Science & Technology - Other Topics Yarrowia - genetics Yarrowia - metabolism |
title | Sorting for secreted molecule production using a biosensor-in-microdroplet approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sorting%20for%20secreted%20molecule%20production%20using%20a%20biosensor-in-microdroplet%20approach&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bowman,%20Emily%20K.&rft.date=2021-09-07&rft.volume=118&rft.issue=36&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=2106818118&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2106818118&rft_dat=%3Cjstor_osti_%3E27075412%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34475218&rft_jstor_id=27075412&rfr_iscdi=true |