Superconducting qubits in a flip-chip architecture
Flip-chip architectures have recently enabled significant scaling-up of multi-qubit circuits and have been used to assemble hybrid quantum systems that combine different substrates, for example, for quantum acoustics experiments. The standard flip-chip method uses superconducting galvanic connection...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-06, Vol.118 (23) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 118 |
creator | Conner, C. R. Bienfait, A. Chang, H. -S. Chou, M. -H. Dumur, É. Grebel, J. Peairs, G. A. Povey, R. G. Yan, H. Zhong, Y. P. Cleland, A. N. |
description | Flip-chip architectures have recently enabled significant scaling-up of multi-qubit circuits and have been used to assemble hybrid quantum systems that combine different substrates, for example, for quantum acoustics experiments. The standard flip-chip method uses superconducting galvanic connections between two substrates, typically implemented using sophisticated indium wafer-bonding systems, which give highly reliable and temperature-cyclable assemblies, but are expensive, somewhat inflexible in design, and require robust substrates that can sustain the large compressive forces required to cold-weld the indium bonds. A much simpler method is to assemble dies using very low-force contacts and air-dried adhesives, although this does not provide a galvanic contact between the dies. In this work, we demonstrate that the latter technique can be used to reliably couple superconducting qubit circuits, in which the qubits are on separate dies, without the need for a galvanic connection. We demonstrate full vector qubit control of each qubit on each of the two dies, with high-fidelity single-shot readout, and further demonstrate entanglement-generating excitation swaps as well as benchmark a controlled-Z entangling gate between the two qubits on the two dies. This exemplifies a simple and inexpensive assembly method for two-plus-one-dimensional quantum circuit integration that supports the use of delicate or unusually shaped substrates. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1819508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819508</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18195083</originalsourceid><addsrcrecordid>eNqNzEsKwjAUheGLKBgfewjOA7kNselYFOc6LzVNbaSkMY_9G8EFOPo58HEWQJDXNROIagmEcy7YsZG4hk2MrzJlJQSB6pa9CXp2fdbJuid954dNkVpHOzpM1jM9Wk-7UJKMTjmYHayGbopm_-sWDpfz_XRlc0y2jfrrxvLoCm9RYSO5En-hD4LENWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superconducting qubits in a flip-chip architecture</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Conner, C. R. ; Bienfait, A. ; Chang, H. -S. ; Chou, M. -H. ; Dumur, É. ; Grebel, J. ; Peairs, G. A. ; Povey, R. G. ; Yan, H. ; Zhong, Y. P. ; Cleland, A. N.</creator><creatorcontrib>Conner, C. R. ; Bienfait, A. ; Chang, H. -S. ; Chou, M. -H. ; Dumur, É. ; Grebel, J. ; Peairs, G. A. ; Povey, R. G. ; Yan, H. ; Zhong, Y. P. ; Cleland, A. N. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Flip-chip architectures have recently enabled significant scaling-up of multi-qubit circuits and have been used to assemble hybrid quantum systems that combine different substrates, for example, for quantum acoustics experiments. The standard flip-chip method uses superconducting galvanic connections between two substrates, typically implemented using sophisticated indium wafer-bonding systems, which give highly reliable and temperature-cyclable assemblies, but are expensive, somewhat inflexible in design, and require robust substrates that can sustain the large compressive forces required to cold-weld the indium bonds. A much simpler method is to assemble dies using very low-force contacts and air-dried adhesives, although this does not provide a galvanic contact between the dies. In this work, we demonstrate that the latter technique can be used to reliably couple superconducting qubit circuits, in which the qubits are on separate dies, without the need for a galvanic connection. We demonstrate full vector qubit control of each qubit on each of the two dies, with high-fidelity single-shot readout, and further demonstrate entanglement-generating excitation swaps as well as benchmark a controlled-Z entangling gate between the two qubits on the two dies. This exemplifies a simple and inexpensive assembly method for two-plus-one-dimensional quantum circuit integration that supports the use of delicate or unusually shaped substrates.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><ispartof>Applied physics letters, 2021-06, Vol.118 (23)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000256464272 ; 0000000252725260 ; 0000000349814294 ; 0000000268752298 ; 0000000196816108 ; 0000000199589975 ; 0000000233823287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1819508$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Conner, C. R.</creatorcontrib><creatorcontrib>Bienfait, A.</creatorcontrib><creatorcontrib>Chang, H. -S.</creatorcontrib><creatorcontrib>Chou, M. -H.</creatorcontrib><creatorcontrib>Dumur, É.</creatorcontrib><creatorcontrib>Grebel, J.</creatorcontrib><creatorcontrib>Peairs, G. A.</creatorcontrib><creatorcontrib>Povey, R. G.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Zhong, Y. P.</creatorcontrib><creatorcontrib>Cleland, A. N.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Superconducting qubits in a flip-chip architecture</title><title>Applied physics letters</title><description>Flip-chip architectures have recently enabled significant scaling-up of multi-qubit circuits and have been used to assemble hybrid quantum systems that combine different substrates, for example, for quantum acoustics experiments. The standard flip-chip method uses superconducting galvanic connections between two substrates, typically implemented using sophisticated indium wafer-bonding systems, which give highly reliable and temperature-cyclable assemblies, but are expensive, somewhat inflexible in design, and require robust substrates that can sustain the large compressive forces required to cold-weld the indium bonds. A much simpler method is to assemble dies using very low-force contacts and air-dried adhesives, although this does not provide a galvanic contact between the dies. In this work, we demonstrate that the latter technique can be used to reliably couple superconducting qubit circuits, in which the qubits are on separate dies, without the need for a galvanic connection. We demonstrate full vector qubit control of each qubit on each of the two dies, with high-fidelity single-shot readout, and further demonstrate entanglement-generating excitation swaps as well as benchmark a controlled-Z entangling gate between the two qubits on the two dies. This exemplifies a simple and inexpensive assembly method for two-plus-one-dimensional quantum circuit integration that supports the use of delicate or unusually shaped substrates.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNzEsKwjAUheGLKBgfewjOA7kNselYFOc6LzVNbaSkMY_9G8EFOPo58HEWQJDXNROIagmEcy7YsZG4hk2MrzJlJQSB6pa9CXp2fdbJuid954dNkVpHOzpM1jM9Wk-7UJKMTjmYHayGbopm_-sWDpfz_XRlc0y2jfrrxvLoCm9RYSO5En-hD4LENWg</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Conner, C. R.</creator><creator>Bienfait, A.</creator><creator>Chang, H. -S.</creator><creator>Chou, M. -H.</creator><creator>Dumur, É.</creator><creator>Grebel, J.</creator><creator>Peairs, G. A.</creator><creator>Povey, R. G.</creator><creator>Yan, H.</creator><creator>Zhong, Y. P.</creator><creator>Cleland, A. N.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000256464272</orcidid><orcidid>https://orcid.org/0000000252725260</orcidid><orcidid>https://orcid.org/0000000349814294</orcidid><orcidid>https://orcid.org/0000000268752298</orcidid><orcidid>https://orcid.org/0000000196816108</orcidid><orcidid>https://orcid.org/0000000199589975</orcidid><orcidid>https://orcid.org/0000000233823287</orcidid></search><sort><creationdate>20210610</creationdate><title>Superconducting qubits in a flip-chip architecture</title><author>Conner, C. R. ; Bienfait, A. ; Chang, H. -S. ; Chou, M. -H. ; Dumur, É. ; Grebel, J. ; Peairs, G. A. ; Povey, R. G. ; Yan, H. ; Zhong, Y. P. ; Cleland, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18195083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conner, C. R.</creatorcontrib><creatorcontrib>Bienfait, A.</creatorcontrib><creatorcontrib>Chang, H. -S.</creatorcontrib><creatorcontrib>Chou, M. -H.</creatorcontrib><creatorcontrib>Dumur, É.</creatorcontrib><creatorcontrib>Grebel, J.</creatorcontrib><creatorcontrib>Peairs, G. A.</creatorcontrib><creatorcontrib>Povey, R. G.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Zhong, Y. P.</creatorcontrib><creatorcontrib>Cleland, A. N.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conner, C. R.</au><au>Bienfait, A.</au><au>Chang, H. -S.</au><au>Chou, M. -H.</au><au>Dumur, É.</au><au>Grebel, J.</au><au>Peairs, G. A.</au><au>Povey, R. G.</au><au>Yan, H.</au><au>Zhong, Y. P.</au><au>Cleland, A. N.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconducting qubits in a flip-chip architecture</atitle><jtitle>Applied physics letters</jtitle><date>2021-06-10</date><risdate>2021</risdate><volume>118</volume><issue>23</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Flip-chip architectures have recently enabled significant scaling-up of multi-qubit circuits and have been used to assemble hybrid quantum systems that combine different substrates, for example, for quantum acoustics experiments. The standard flip-chip method uses superconducting galvanic connections between two substrates, typically implemented using sophisticated indium wafer-bonding systems, which give highly reliable and temperature-cyclable assemblies, but are expensive, somewhat inflexible in design, and require robust substrates that can sustain the large compressive forces required to cold-weld the indium bonds. A much simpler method is to assemble dies using very low-force contacts and air-dried adhesives, although this does not provide a galvanic contact between the dies. In this work, we demonstrate that the latter technique can be used to reliably couple superconducting qubit circuits, in which the qubits are on separate dies, without the need for a galvanic connection. We demonstrate full vector qubit control of each qubit on each of the two dies, with high-fidelity single-shot readout, and further demonstrate entanglement-generating excitation swaps as well as benchmark a controlled-Z entangling gate between the two qubits on the two dies. This exemplifies a simple and inexpensive assembly method for two-plus-one-dimensional quantum circuit integration that supports the use of delicate or unusually shaped substrates.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000256464272</orcidid><orcidid>https://orcid.org/0000000252725260</orcidid><orcidid>https://orcid.org/0000000349814294</orcidid><orcidid>https://orcid.org/0000000268752298</orcidid><orcidid>https://orcid.org/0000000196816108</orcidid><orcidid>https://orcid.org/0000000199589975</orcidid><orcidid>https://orcid.org/0000000233823287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-06, Vol.118 (23) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_1819508 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY |
title | Superconducting qubits in a flip-chip architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconducting%20qubits%20in%20a%20flip-chip%20architecture&rft.jtitle=Applied%20physics%20letters&rft.au=Conner,%20C.%20R.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-06-10&rft.volume=118&rft.issue=23&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/&rft_dat=%3Costi%3E1819508%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |