Uranium nitride (UN) pellets with controllable microstructure and phase – fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties
Dense uranium mononitride (UN) pellets with controlled microstructures and tailored grain size from large-grained to a few microns are synthesized by spark plasma sintering (SPS) combined with high energy ball milling. The impacts of the sintering conditions on fuel microstructure, grain size, physi...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2021-12, Vol.557, p.153272, Article 153272 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 153272 |
container_title | Journal of nuclear materials |
container_volume | 557 |
creator | Yang, Kun Kardoulaki, Erofili Zhao, Dong Broussard, Andre Metzger, Kathryn White, Joshua T. Sivack, Michael R. Mcclellan, Kenneth J. Lahoda, Edward J. Lian, Jie |
description | Dense uranium mononitride (UN) pellets with controlled microstructures and tailored grain size from large-grained to a few microns are synthesized by spark plasma sintering (SPS) combined with high energy ball milling. The impacts of the sintering conditions on fuel microstructure, grain size, physical density, and phase behavior are systematically investigated, and the thermal-mechanical properties and oxidation behavior of the SPS densified UN pellets are characterized. Higher sintering temperatures and longer ball milling durations and thus finer starting UN powders promote sintering and densification, and dense UN pellets above 95% theoretical density can be achieved by SPS at 1873 K for 10 min. UN phase purity is maintained in the SPS-densified pellets sintered at a lower temperature and short duration. A phase heterogeneity with secondary UO2 or uranium sesquinitride (U2N3) occurs for the UN pellets sintered at higher temperatures using finer UN powders. The hardness and fracture toughness of the SPS-densified UN pellets increase with smaller grain sizes and higher densities to 7.9 GPa and 3.5 MPa m1/2, respectively. Both small (1–2 μm) and large grain-sized (30–50 µm) UN pellets exhibit good thermal conductivity. Dynamic oxidation testing by a thermogravimetric analyzer in air shows that the onset temperature for oxidation varies with microstructure and phase heterogeneity of the SPS densified UN pellets. Particularly, the smaller-grained (micron-sized) UN pellets containing uranium oxides and U2N3 display lower weight gain and significantly-reduced oxidation kinetics, and full oxidation completes at a temperature above 1173 K when tested with a ramp rate of 10 K/min. |
doi_str_mv | 10.1016/j.jnucmat.2021.153272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1819162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311521004955</els_id><sourcerecordid>2600975674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-294bf91525814e6cbfd5271a0a5021ff552e31e4cfa9c7adf75e2fc37f5cb6913</originalsourceid><addsrcrecordid>eNqFkcFu1TAQRSNEJR6FT0CyYAOLPDxOnLysEKqAIlV0w1tbjjPmOSROGDst3fEPfAT_xZfgNN2z8Sx87-jMvVn2AvgeOFRv-33vFzPquBdcwB5kIWrxKNvBoS7y8iD442zHuRB5ASCfZE9D6DnnsuFyl_05kvZuGZl3kVyH7PXxyxs24zBgDOzWxRMzk480DYNuB2SjMzSFSIuJCyHTvmPzSQdkf3_9Zla35IyObvKsvWNh1vSdzYMOo2bB-Yjk_Ld7Tzyho_WlUQ_5iOaUKIwe7j-nn67blsw0zUjRYXiWnVk9BHz-MM-z48cPXy8u86vrT58v3l_lpgSIuWjK1jYghTxAiZVpbSdFDZprmaKxVkqBBWBprG5MrTtbSxTWFLWVpq0aKM6zl9vedKRTwbiY2FICHk1UcIAGKpFErzZR4vuxYIiqnxbyiUuJivOmllVdJpXcVGtigdCqmdyo6U4BV2txqlcPxam1OLUVl3zvNh-mO28c0oqB3mDnaKXoJvefDf8Aybio1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600975674</pqid></control><display><type>article</type><title>Uranium nitride (UN) pellets with controllable microstructure and phase – fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Yang, Kun ; Kardoulaki, Erofili ; Zhao, Dong ; Broussard, Andre ; Metzger, Kathryn ; White, Joshua T. ; Sivack, Michael R. ; Mcclellan, Kenneth J. ; Lahoda, Edward J. ; Lian, Jie</creator><creatorcontrib>Yang, Kun ; Kardoulaki, Erofili ; Zhao, Dong ; Broussard, Andre ; Metzger, Kathryn ; White, Joshua T. ; Sivack, Michael R. ; Mcclellan, Kenneth J. ; Lahoda, Edward J. ; Lian, Jie ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Dense uranium mononitride (UN) pellets with controlled microstructures and tailored grain size from large-grained to a few microns are synthesized by spark plasma sintering (SPS) combined with high energy ball milling. The impacts of the sintering conditions on fuel microstructure, grain size, physical density, and phase behavior are systematically investigated, and the thermal-mechanical properties and oxidation behavior of the SPS densified UN pellets are characterized. Higher sintering temperatures and longer ball milling durations and thus finer starting UN powders promote sintering and densification, and dense UN pellets above 95% theoretical density can be achieved by SPS at 1873 K for 10 min. UN phase purity is maintained in the SPS-densified pellets sintered at a lower temperature and short duration. A phase heterogeneity with secondary UO2 or uranium sesquinitride (U2N3) occurs for the UN pellets sintered at higher temperatures using finer UN powders. The hardness and fracture toughness of the SPS-densified UN pellets increase with smaller grain sizes and higher densities to 7.9 GPa and 3.5 MPa m1/2, respectively. Both small (1–2 μm) and large grain-sized (30–50 µm) UN pellets exhibit good thermal conductivity. Dynamic oxidation testing by a thermogravimetric analyzer in air shows that the onset temperature for oxidation varies with microstructure and phase heterogeneity of the SPS densified UN pellets. Particularly, the smaller-grained (micron-sized) UN pellets containing uranium oxides and U2N3 display lower weight gain and significantly-reduced oxidation kinetics, and full oxidation completes at a temperature above 1173 K when tested with a ramp rate of 10 K/min.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2021.153272</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Air temperature ; Ball milling ; Densification ; Fabrication ; Fracture toughness ; Grain size ; Heterogeneity ; MATERIALS SCIENCE ; Mechanical properties ; Microstructure ; Microstructure control ; Oxidation ; Oxidation resistance ; Particle size ; Pellets ; Phase heterogeneity ; Plasma sintering ; Reaction kinetics ; Sintering (powder metallurgy) ; Spark plasma sintering ; Temperature ; Theoretical density ; Thermal conductivity ; Uranium ; Uranium dioxide ; Uranium nitride ; Uranium oxides</subject><ispartof>Journal of nuclear materials, 2021-12, Vol.557, p.153272, Article 153272</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Dec 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-294bf91525814e6cbfd5271a0a5021ff552e31e4cfa9c7adf75e2fc37f5cb6913</citedby><cites>FETCH-LOGICAL-c411t-294bf91525814e6cbfd5271a0a5021ff552e31e4cfa9c7adf75e2fc37f5cb6913</cites><orcidid>0000000235036754 ; 0000000244092264 ; 0000000209825127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2021.153272$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1819162$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Kardoulaki, Erofili</creatorcontrib><creatorcontrib>Zhao, Dong</creatorcontrib><creatorcontrib>Broussard, Andre</creatorcontrib><creatorcontrib>Metzger, Kathryn</creatorcontrib><creatorcontrib>White, Joshua T.</creatorcontrib><creatorcontrib>Sivack, Michael R.</creatorcontrib><creatorcontrib>Mcclellan, Kenneth J.</creatorcontrib><creatorcontrib>Lahoda, Edward J.</creatorcontrib><creatorcontrib>Lian, Jie</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Uranium nitride (UN) pellets with controllable microstructure and phase – fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties</title><title>Journal of nuclear materials</title><description>Dense uranium mononitride (UN) pellets with controlled microstructures and tailored grain size from large-grained to a few microns are synthesized by spark plasma sintering (SPS) combined with high energy ball milling. The impacts of the sintering conditions on fuel microstructure, grain size, physical density, and phase behavior are systematically investigated, and the thermal-mechanical properties and oxidation behavior of the SPS densified UN pellets are characterized. Higher sintering temperatures and longer ball milling durations and thus finer starting UN powders promote sintering and densification, and dense UN pellets above 95% theoretical density can be achieved by SPS at 1873 K for 10 min. UN phase purity is maintained in the SPS-densified pellets sintered at a lower temperature and short duration. A phase heterogeneity with secondary UO2 or uranium sesquinitride (U2N3) occurs for the UN pellets sintered at higher temperatures using finer UN powders. The hardness and fracture toughness of the SPS-densified UN pellets increase with smaller grain sizes and higher densities to 7.9 GPa and 3.5 MPa m1/2, respectively. Both small (1–2 μm) and large grain-sized (30–50 µm) UN pellets exhibit good thermal conductivity. Dynamic oxidation testing by a thermogravimetric analyzer in air shows that the onset temperature for oxidation varies with microstructure and phase heterogeneity of the SPS densified UN pellets. Particularly, the smaller-grained (micron-sized) UN pellets containing uranium oxides and U2N3 display lower weight gain and significantly-reduced oxidation kinetics, and full oxidation completes at a temperature above 1173 K when tested with a ramp rate of 10 K/min.</description><subject>Air temperature</subject><subject>Ball milling</subject><subject>Densification</subject><subject>Fabrication</subject><subject>Fracture toughness</subject><subject>Grain size</subject><subject>Heterogeneity</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Microstructure control</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Particle size</subject><subject>Pellets</subject><subject>Phase heterogeneity</subject><subject>Plasma sintering</subject><subject>Reaction kinetics</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><subject>Temperature</subject><subject>Theoretical density</subject><subject>Thermal conductivity</subject><subject>Uranium</subject><subject>Uranium dioxide</subject><subject>Uranium nitride</subject><subject>Uranium oxides</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1TAQRSNEJR6FT0CyYAOLPDxOnLysEKqAIlV0w1tbjjPmOSROGDst3fEPfAT_xZfgNN2z8Sx87-jMvVn2AvgeOFRv-33vFzPquBdcwB5kIWrxKNvBoS7y8iD442zHuRB5ASCfZE9D6DnnsuFyl_05kvZuGZl3kVyH7PXxyxs24zBgDOzWxRMzk480DYNuB2SjMzSFSIuJCyHTvmPzSQdkf3_9Zla35IyObvKsvWNh1vSdzYMOo2bB-Yjk_Ld7Tzyho_WlUQ_5iOaUKIwe7j-nn67blsw0zUjRYXiWnVk9BHz-MM-z48cPXy8u86vrT58v3l_lpgSIuWjK1jYghTxAiZVpbSdFDZprmaKxVkqBBWBprG5MrTtbSxTWFLWVpq0aKM6zl9vedKRTwbiY2FICHk1UcIAGKpFErzZR4vuxYIiqnxbyiUuJivOmllVdJpXcVGtigdCqmdyo6U4BV2txqlcPxam1OLUVl3zvNh-mO28c0oqB3mDnaKXoJvefDf8Aybio1Q</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Yang, Kun</creator><creator>Kardoulaki, Erofili</creator><creator>Zhao, Dong</creator><creator>Broussard, Andre</creator><creator>Metzger, Kathryn</creator><creator>White, Joshua T.</creator><creator>Sivack, Michael R.</creator><creator>Mcclellan, Kenneth J.</creator><creator>Lahoda, Edward J.</creator><creator>Lian, Jie</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000235036754</orcidid><orcidid>https://orcid.org/0000000244092264</orcidid><orcidid>https://orcid.org/0000000209825127</orcidid></search><sort><creationdate>20211215</creationdate><title>Uranium nitride (UN) pellets with controllable microstructure and phase – fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties</title><author>Yang, Kun ; Kardoulaki, Erofili ; Zhao, Dong ; Broussard, Andre ; Metzger, Kathryn ; White, Joshua T. ; Sivack, Michael R. ; Mcclellan, Kenneth J. ; Lahoda, Edward J. ; Lian, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-294bf91525814e6cbfd5271a0a5021ff552e31e4cfa9c7adf75e2fc37f5cb6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Ball milling</topic><topic>Densification</topic><topic>Fabrication</topic><topic>Fracture toughness</topic><topic>Grain size</topic><topic>Heterogeneity</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Microstructure control</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Particle size</topic><topic>Pellets</topic><topic>Phase heterogeneity</topic><topic>Plasma sintering</topic><topic>Reaction kinetics</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><topic>Temperature</topic><topic>Theoretical density</topic><topic>Thermal conductivity</topic><topic>Uranium</topic><topic>Uranium dioxide</topic><topic>Uranium nitride</topic><topic>Uranium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Kardoulaki, Erofili</creatorcontrib><creatorcontrib>Zhao, Dong</creatorcontrib><creatorcontrib>Broussard, Andre</creatorcontrib><creatorcontrib>Metzger, Kathryn</creatorcontrib><creatorcontrib>White, Joshua T.</creatorcontrib><creatorcontrib>Sivack, Michael R.</creatorcontrib><creatorcontrib>Mcclellan, Kenneth J.</creatorcontrib><creatorcontrib>Lahoda, Edward J.</creatorcontrib><creatorcontrib>Lian, Jie</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kun</au><au>Kardoulaki, Erofili</au><au>Zhao, Dong</au><au>Broussard, Andre</au><au>Metzger, Kathryn</au><au>White, Joshua T.</au><au>Sivack, Michael R.</au><au>Mcclellan, Kenneth J.</au><au>Lahoda, Edward J.</au><au>Lian, Jie</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uranium nitride (UN) pellets with controllable microstructure and phase – fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties</atitle><jtitle>Journal of nuclear materials</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>557</volume><spage>153272</spage><pages>153272-</pages><artnum>153272</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Dense uranium mononitride (UN) pellets with controlled microstructures and tailored grain size from large-grained to a few microns are synthesized by spark plasma sintering (SPS) combined with high energy ball milling. The impacts of the sintering conditions on fuel microstructure, grain size, physical density, and phase behavior are systematically investigated, and the thermal-mechanical properties and oxidation behavior of the SPS densified UN pellets are characterized. Higher sintering temperatures and longer ball milling durations and thus finer starting UN powders promote sintering and densification, and dense UN pellets above 95% theoretical density can be achieved by SPS at 1873 K for 10 min. UN phase purity is maintained in the SPS-densified pellets sintered at a lower temperature and short duration. A phase heterogeneity with secondary UO2 or uranium sesquinitride (U2N3) occurs for the UN pellets sintered at higher temperatures using finer UN powders. The hardness and fracture toughness of the SPS-densified UN pellets increase with smaller grain sizes and higher densities to 7.9 GPa and 3.5 MPa m1/2, respectively. Both small (1–2 μm) and large grain-sized (30–50 µm) UN pellets exhibit good thermal conductivity. Dynamic oxidation testing by a thermogravimetric analyzer in air shows that the onset temperature for oxidation varies with microstructure and phase heterogeneity of the SPS densified UN pellets. Particularly, the smaller-grained (micron-sized) UN pellets containing uranium oxides and U2N3 display lower weight gain and significantly-reduced oxidation kinetics, and full oxidation completes at a temperature above 1173 K when tested with a ramp rate of 10 K/min.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2021.153272</doi><orcidid>https://orcid.org/0000000235036754</orcidid><orcidid>https://orcid.org/0000000244092264</orcidid><orcidid>https://orcid.org/0000000209825127</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2021-12, Vol.557, p.153272, Article 153272 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_1819162 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Air temperature Ball milling Densification Fabrication Fracture toughness Grain size Heterogeneity MATERIALS SCIENCE Mechanical properties Microstructure Microstructure control Oxidation Oxidation resistance Particle size Pellets Phase heterogeneity Plasma sintering Reaction kinetics Sintering (powder metallurgy) Spark plasma sintering Temperature Theoretical density Thermal conductivity Uranium Uranium dioxide Uranium nitride Uranium oxides |
title | Uranium nitride (UN) pellets with controllable microstructure and phase – fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uranium%20nitride%20(UN)%20pellets%20with%20controllable%20microstructure%20and%20phase%20%E2%80%93%20fabrication%20by%20spark%20plasma%20sintering%20and%20their%20thermal-mechanical%20and%20oxidation%20properties&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Yang,%20Kun&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-12-15&rft.volume=557&rft.spage=153272&rft.pages=153272-&rft.artnum=153272&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2021.153272&rft_dat=%3Cproquest_osti_%3E2600975674%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600975674&rft_id=info:pmid/&rft_els_id=S0022311521004955&rfr_iscdi=true |