LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement

Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2021-07, Vol.46 (7), p.1136-1149
Hauptverfasser: Reynolds, John G., Muetterties, Nicolas K., Nelson, A. J., Mason, Harris E., Moore, Jason S., Coffee, Keith R., Kahl, Evan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1149
container_issue 7
container_start_page 1136
container_title Propellants, explosives, pyrotechnics
container_volume 46
creator Reynolds, John G.
Muetterties, Nicolas K.
Nelson, A. J.
Mason, Harris E.
Moore, Jason S.
Coffee, Keith R.
Kahl, Evan M.
description Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to various thermal environments in a sealed small‐scale vessel cook‐off test reactor (heated at 0.1 to 100 °C/min until the reactor opened at 3000 psi (20.7 MPa)). Previous work has shown no additional sensitivity of these residues as evaluated by small‐scale safety analysis, but characterization on the molecular scale indicates the TATB is transformed to more reactive compounds as well as the residue could be precursors to toxic gases. The solids and chars were characterized by various analytical methods. Heat‐flow measurements indicated exothermic release is due to a mixture of residual TATB and related decomposition products (which may be more energetic). The N/C and O/N ratios indicated a material much more degraded than TATB. Primarily, the solids were a network of amorphous C inter‐dispersed with N and O. Types of bonding include C−C, C−N, N−H, N−C, N=C, N≡C, C−O=, and −OH. Solvent extracts of the solids showed TATB decomposition intermediates benzo‐furazans and benzo‐furoxans, substituted TATB (mono‐nitroso, hydroxyl, and chlorinated) along with several unidentified smaller molecules. These results indicate thermal treatment produces an amorphous carbon residue with heteroatoms incorporated through differing functionality, varying depending upon the thermal severity of exposure. These structures also could further decompose producing toxic light gases (such as cyanide).
doi_str_mv 10.1002/prep.202100034
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1819020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547548819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3844-99c98d787e569e3586bb241eed1f23146180d288f2a997e71785527d7d2c915e3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi0EEqFw5Wy156Qe7zq2j1UotFKkVk2LuFmud6y43bUXeytUDlUfoc_Ik-AoCI6c5t_vG83oI-QjsAUwxo_HjOOCM14L1rSvyAwEh3nLlHxNZkzWvAEQb8m7Uu4Y21EwI0_rb7-eX0DS6y3mwfb0E7o0jKmEKaRYR6utzdZNmMNPu2vR5Okm9aGjV1hC94CF-pwGukrpvuIX3tMQqaWbuqyvjY2zPdKvWAr29CZ2mCsafYg4YJzekzfe9gU__IkH5Obz6fXqbL6--HK-OlnPXaPadq6106qTSqJYamyEWt7e8hYQO_C8gXYJinVcKc-t1hIlSCUEl53suNMgsDkgh_u9qUzBFBcmdFuXYkQ3GVCgGWcVOtpDY07f62OTuUsPOda7DBetFK2qYKUWe8rlVEpGb8YcBpsfDTCzM8LsjDB_jagCvRf8CD0-_oc2l1enl_-0vwFh1Y95</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547548819</pqid></control><display><type>article</type><title>LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Reynolds, John G. ; Muetterties, Nicolas K. ; Nelson, A. J. ; Mason, Harris E. ; Moore, Jason S. ; Coffee, Keith R. ; Kahl, Evan M.</creator><creatorcontrib>Reynolds, John G. ; Muetterties, Nicolas K. ; Nelson, A. J. ; Mason, Harris E. ; Moore, Jason S. ; Coffee, Keith R. ; Kahl, Evan M. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to various thermal environments in a sealed small‐scale vessel cook‐off test reactor (heated at 0.1 to 100 °C/min until the reactor opened at 3000 psi (20.7 MPa)). Previous work has shown no additional sensitivity of these residues as evaluated by small‐scale safety analysis, but characterization on the molecular scale indicates the TATB is transformed to more reactive compounds as well as the residue could be precursors to toxic gases. The solids and chars were characterized by various analytical methods. Heat‐flow measurements indicated exothermic release is due to a mixture of residual TATB and related decomposition products (which may be more energetic). The N/C and O/N ratios indicated a material much more degraded than TATB. Primarily, the solids were a network of amorphous C inter‐dispersed with N and O. Types of bonding include C−C, C−N, N−H, N−C, N=C, N≡C, C−O=, and −OH. Solvent extracts of the solids showed TATB decomposition intermediates benzo‐furazans and benzo‐furoxans, substituted TATB (mono‐nitroso, hydroxyl, and chlorinated) along with several unidentified smaller molecules. These results indicate thermal treatment produces an amorphous carbon residue with heteroatoms incorporated through differing functionality, varying depending upon the thermal severity of exposure. These structures also could further decompose producing toxic light gases (such as cyanide).</description><identifier>ISSN: 0721-3115</identifier><identifier>EISSN: 1521-4087</identifier><identifier>DOI: 10.1002/prep.202100034</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Benzene ; Decomposition ; Energetic materials ; Exothermic reactions ; Explosives safety ; explosives safety testing ; Exposure ; Heat treatment ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; LX-17 ; Molecular characterization ; Nuclear engineering ; Nuclear safety ; Residues ; TATB ; Thermal cook-off ; Thermal decomposition ; Thermal environments ; Thermodynamic properties ; Vessels</subject><ispartof>Propellants, explosives, pyrotechnics, 2021-07, Vol.46 (7), p.1136-1149</ispartof><rights>2021. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3844-99c98d787e569e3586bb241eed1f23146180d288f2a997e71785527d7d2c915e3</citedby><cites>FETCH-LOGICAL-c3844-99c98d787e569e3586bb241eed1f23146180d288f2a997e71785527d7d2c915e3</cites><orcidid>0000-0003-3153-063X ; 000000033153063X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprep.202100034$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprep.202100034$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1819020$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Reynolds, John G.</creatorcontrib><creatorcontrib>Muetterties, Nicolas K.</creatorcontrib><creatorcontrib>Nelson, A. J.</creatorcontrib><creatorcontrib>Mason, Harris E.</creatorcontrib><creatorcontrib>Moore, Jason S.</creatorcontrib><creatorcontrib>Coffee, Keith R.</creatorcontrib><creatorcontrib>Kahl, Evan M.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement</title><title>Propellants, explosives, pyrotechnics</title><description>Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to various thermal environments in a sealed small‐scale vessel cook‐off test reactor (heated at 0.1 to 100 °C/min until the reactor opened at 3000 psi (20.7 MPa)). Previous work has shown no additional sensitivity of these residues as evaluated by small‐scale safety analysis, but characterization on the molecular scale indicates the TATB is transformed to more reactive compounds as well as the residue could be precursors to toxic gases. The solids and chars were characterized by various analytical methods. Heat‐flow measurements indicated exothermic release is due to a mixture of residual TATB and related decomposition products (which may be more energetic). The N/C and O/N ratios indicated a material much more degraded than TATB. Primarily, the solids were a network of amorphous C inter‐dispersed with N and O. Types of bonding include C−C, C−N, N−H, N−C, N=C, N≡C, C−O=, and −OH. Solvent extracts of the solids showed TATB decomposition intermediates benzo‐furazans and benzo‐furoxans, substituted TATB (mono‐nitroso, hydroxyl, and chlorinated) along with several unidentified smaller molecules. These results indicate thermal treatment produces an amorphous carbon residue with heteroatoms incorporated through differing functionality, varying depending upon the thermal severity of exposure. These structures also could further decompose producing toxic light gases (such as cyanide).</description><subject>Benzene</subject><subject>Decomposition</subject><subject>Energetic materials</subject><subject>Exothermic reactions</subject><subject>Explosives safety</subject><subject>explosives safety testing</subject><subject>Exposure</subject><subject>Heat treatment</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>LX-17</subject><subject>Molecular characterization</subject><subject>Nuclear engineering</subject><subject>Nuclear safety</subject><subject>Residues</subject><subject>TATB</subject><subject>Thermal cook-off</subject><subject>Thermal decomposition</subject><subject>Thermal environments</subject><subject>Thermodynamic properties</subject><subject>Vessels</subject><issn>0721-3115</issn><issn>1521-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc9uEzEQxi0EEqFw5Wy156Qe7zq2j1UotFKkVk2LuFmud6y43bUXeytUDlUfoc_Ik-AoCI6c5t_vG83oI-QjsAUwxo_HjOOCM14L1rSvyAwEh3nLlHxNZkzWvAEQb8m7Uu4Y21EwI0_rb7-eX0DS6y3mwfb0E7o0jKmEKaRYR6utzdZNmMNPu2vR5Okm9aGjV1hC94CF-pwGukrpvuIX3tMQqaWbuqyvjY2zPdKvWAr29CZ2mCsafYg4YJzekzfe9gU__IkH5Obz6fXqbL6--HK-OlnPXaPadq6106qTSqJYamyEWt7e8hYQO_C8gXYJinVcKc-t1hIlSCUEl53suNMgsDkgh_u9qUzBFBcmdFuXYkQ3GVCgGWcVOtpDY07f62OTuUsPOda7DBetFK2qYKUWe8rlVEpGb8YcBpsfDTCzM8LsjDB_jagCvRf8CD0-_oc2l1enl_-0vwFh1Y95</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Reynolds, John G.</creator><creator>Muetterties, Nicolas K.</creator><creator>Nelson, A. J.</creator><creator>Mason, Harris E.</creator><creator>Moore, Jason S.</creator><creator>Coffee, Keith R.</creator><creator>Kahl, Evan M.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3153-063X</orcidid><orcidid>https://orcid.org/000000033153063X</orcidid></search><sort><creationdate>202107</creationdate><title>LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement</title><author>Reynolds, John G. ; Muetterties, Nicolas K. ; Nelson, A. J. ; Mason, Harris E. ; Moore, Jason S. ; Coffee, Keith R. ; Kahl, Evan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3844-99c98d787e569e3586bb241eed1f23146180d288f2a997e71785527d7d2c915e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benzene</topic><topic>Decomposition</topic><topic>Energetic materials</topic><topic>Exothermic reactions</topic><topic>Explosives safety</topic><topic>explosives safety testing</topic><topic>Exposure</topic><topic>Heat treatment</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>LX-17</topic><topic>Molecular characterization</topic><topic>Nuclear engineering</topic><topic>Nuclear safety</topic><topic>Residues</topic><topic>TATB</topic><topic>Thermal cook-off</topic><topic>Thermal decomposition</topic><topic>Thermal environments</topic><topic>Thermodynamic properties</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reynolds, John G.</creatorcontrib><creatorcontrib>Muetterties, Nicolas K.</creatorcontrib><creatorcontrib>Nelson, A. J.</creatorcontrib><creatorcontrib>Mason, Harris E.</creatorcontrib><creatorcontrib>Moore, Jason S.</creatorcontrib><creatorcontrib>Coffee, Keith R.</creatorcontrib><creatorcontrib>Kahl, Evan M.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Propellants, explosives, pyrotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynolds, John G.</au><au>Muetterties, Nicolas K.</au><au>Nelson, A. J.</au><au>Mason, Harris E.</au><au>Moore, Jason S.</au><au>Coffee, Keith R.</au><au>Kahl, Evan M.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement</atitle><jtitle>Propellants, explosives, pyrotechnics</jtitle><date>2021-07</date><risdate>2021</risdate><volume>46</volume><issue>7</issue><spage>1136</spage><epage>1149</epage><pages>1136-1149</pages><issn>0721-3115</issn><eissn>1521-4087</eissn><abstract>Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to various thermal environments in a sealed small‐scale vessel cook‐off test reactor (heated at 0.1 to 100 °C/min until the reactor opened at 3000 psi (20.7 MPa)). Previous work has shown no additional sensitivity of these residues as evaluated by small‐scale safety analysis, but characterization on the molecular scale indicates the TATB is transformed to more reactive compounds as well as the residue could be precursors to toxic gases. The solids and chars were characterized by various analytical methods. Heat‐flow measurements indicated exothermic release is due to a mixture of residual TATB and related decomposition products (which may be more energetic). The N/C and O/N ratios indicated a material much more degraded than TATB. Primarily, the solids were a network of amorphous C inter‐dispersed with N and O. Types of bonding include C−C, C−N, N−H, N−C, N=C, N≡C, C−O=, and −OH. Solvent extracts of the solids showed TATB decomposition intermediates benzo‐furazans and benzo‐furoxans, substituted TATB (mono‐nitroso, hydroxyl, and chlorinated) along with several unidentified smaller molecules. These results indicate thermal treatment produces an amorphous carbon residue with heteroatoms incorporated through differing functionality, varying depending upon the thermal severity of exposure. These structures also could further decompose producing toxic light gases (such as cyanide).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prep.202100034</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3153-063X</orcidid><orcidid>https://orcid.org/000000033153063X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0721-3115
ispartof Propellants, explosives, pyrotechnics, 2021-07, Vol.46 (7), p.1136-1149
issn 0721-3115
1521-4087
language eng
recordid cdi_osti_scitechconnect_1819020
source Wiley Online Library Journals Frontfile Complete
subjects Benzene
Decomposition
Energetic materials
Exothermic reactions
Explosives safety
explosives safety testing
Exposure
Heat treatment
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
LX-17
Molecular characterization
Nuclear engineering
Nuclear safety
Residues
TATB
Thermal cook-off
Thermal decomposition
Thermal environments
Thermodynamic properties
Vessels
title LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LX%E2%80%9017%20Thermal%20Decomposition%E2%80%90Characterization%20of%20Solid%20Residues%20from%20Cook%E2%80%90Off%20in%20a%20Small%E2%80%90Scale%20Vessel%20Under%20Confinement&rft.jtitle=Propellants,%20explosives,%20pyrotechnics&rft.au=Reynolds,%20John%20G.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-07&rft.volume=46&rft.issue=7&rft.spage=1136&rft.epage=1149&rft.pages=1136-1149&rft.issn=0721-3115&rft.eissn=1521-4087&rft_id=info:doi/10.1002/prep.202100034&rft_dat=%3Cproquest_osti_%3E2547548819%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547548819&rft_id=info:pmid/&rfr_iscdi=true