LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement
Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to vari...
Gespeichert in:
Veröffentlicht in: | Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2021-07, Vol.46 (7), p.1136-1149 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1149 |
---|---|
container_issue | 7 |
container_start_page | 1136 |
container_title | Propellants, explosives, pyrotechnics |
container_volume | 46 |
creator | Reynolds, John G. Muetterties, Nicolas K. Nelson, A. J. Mason, Harris E. Moore, Jason S. Coffee, Keith R. Kahl, Evan M. |
description | Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to various thermal environments in a sealed small‐scale vessel cook‐off test reactor (heated at 0.1 to 100 °C/min until the reactor opened at 3000 psi (20.7 MPa)). Previous work has shown no additional sensitivity of these residues as evaluated by small‐scale safety analysis, but characterization on the molecular scale indicates the TATB is transformed to more reactive compounds as well as the residue could be precursors to toxic gases. The solids and chars were characterized by various analytical methods. Heat‐flow measurements indicated exothermic release is due to a mixture of residual TATB and related decomposition products (which may be more energetic). The N/C and O/N ratios indicated a material much more degraded than TATB. Primarily, the solids were a network of amorphous C inter‐dispersed with N and O. Types of bonding include C−C, C−N, N−H, N−C, N=C, N≡C, C−O=, and −OH. Solvent extracts of the solids showed TATB decomposition intermediates benzo‐furazans and benzo‐furoxans, substituted TATB (mono‐nitroso, hydroxyl, and chlorinated) along with several unidentified smaller molecules. These results indicate thermal treatment produces an amorphous carbon residue with heteroatoms incorporated through differing functionality, varying depending upon the thermal severity of exposure. These structures also could further decompose producing toxic light gases (such as cyanide). |
doi_str_mv | 10.1002/prep.202100034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1819020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547548819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3844-99c98d787e569e3586bb241eed1f23146180d288f2a997e71785527d7d2c915e3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi0EEqFw5Wy156Qe7zq2j1UotFKkVk2LuFmud6y43bUXeytUDlUfoc_Ik-AoCI6c5t_vG83oI-QjsAUwxo_HjOOCM14L1rSvyAwEh3nLlHxNZkzWvAEQb8m7Uu4Y21EwI0_rb7-eX0DS6y3mwfb0E7o0jKmEKaRYR6utzdZNmMNPu2vR5Okm9aGjV1hC94CF-pwGukrpvuIX3tMQqaWbuqyvjY2zPdKvWAr29CZ2mCsafYg4YJzekzfe9gU__IkH5Obz6fXqbL6--HK-OlnPXaPadq6106qTSqJYamyEWt7e8hYQO_C8gXYJinVcKc-t1hIlSCUEl53suNMgsDkgh_u9qUzBFBcmdFuXYkQ3GVCgGWcVOtpDY07f62OTuUsPOda7DBetFK2qYKUWe8rlVEpGb8YcBpsfDTCzM8LsjDB_jagCvRf8CD0-_oc2l1enl_-0vwFh1Y95</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547548819</pqid></control><display><type>article</type><title>LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Reynolds, John G. ; Muetterties, Nicolas K. ; Nelson, A. J. ; Mason, Harris E. ; Moore, Jason S. ; Coffee, Keith R. ; Kahl, Evan M.</creator><creatorcontrib>Reynolds, John G. ; Muetterties, Nicolas K. ; Nelson, A. J. ; Mason, Harris E. ; Moore, Jason S. ; Coffee, Keith R. ; Kahl, Evan M. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to various thermal environments in a sealed small‐scale vessel cook‐off test reactor (heated at 0.1 to 100 °C/min until the reactor opened at 3000 psi (20.7 MPa)). Previous work has shown no additional sensitivity of these residues as evaluated by small‐scale safety analysis, but characterization on the molecular scale indicates the TATB is transformed to more reactive compounds as well as the residue could be precursors to toxic gases. The solids and chars were characterized by various analytical methods. Heat‐flow measurements indicated exothermic release is due to a mixture of residual TATB and related decomposition products (which may be more energetic). The N/C and O/N ratios indicated a material much more degraded than TATB. Primarily, the solids were a network of amorphous C inter‐dispersed with N and O. Types of bonding include C−C, C−N, N−H, N−C, N=C, N≡C, C−O=, and −OH. Solvent extracts of the solids showed TATB decomposition intermediates benzo‐furazans and benzo‐furoxans, substituted TATB (mono‐nitroso, hydroxyl, and chlorinated) along with several unidentified smaller molecules. These results indicate thermal treatment produces an amorphous carbon residue with heteroatoms incorporated through differing functionality, varying depending upon the thermal severity of exposure. These structures also could further decompose producing toxic light gases (such as cyanide).</description><identifier>ISSN: 0721-3115</identifier><identifier>EISSN: 1521-4087</identifier><identifier>DOI: 10.1002/prep.202100034</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Benzene ; Decomposition ; Energetic materials ; Exothermic reactions ; Explosives safety ; explosives safety testing ; Exposure ; Heat treatment ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; LX-17 ; Molecular characterization ; Nuclear engineering ; Nuclear safety ; Residues ; TATB ; Thermal cook-off ; Thermal decomposition ; Thermal environments ; Thermodynamic properties ; Vessels</subject><ispartof>Propellants, explosives, pyrotechnics, 2021-07, Vol.46 (7), p.1136-1149</ispartof><rights>2021. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3844-99c98d787e569e3586bb241eed1f23146180d288f2a997e71785527d7d2c915e3</citedby><cites>FETCH-LOGICAL-c3844-99c98d787e569e3586bb241eed1f23146180d288f2a997e71785527d7d2c915e3</cites><orcidid>0000-0003-3153-063X ; 000000033153063X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprep.202100034$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprep.202100034$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1819020$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Reynolds, John G.</creatorcontrib><creatorcontrib>Muetterties, Nicolas K.</creatorcontrib><creatorcontrib>Nelson, A. J.</creatorcontrib><creatorcontrib>Mason, Harris E.</creatorcontrib><creatorcontrib>Moore, Jason S.</creatorcontrib><creatorcontrib>Coffee, Keith R.</creatorcontrib><creatorcontrib>Kahl, Evan M.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement</title><title>Propellants, explosives, pyrotechnics</title><description>Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to various thermal environments in a sealed small‐scale vessel cook‐off test reactor (heated at 0.1 to 100 °C/min until the reactor opened at 3000 psi (20.7 MPa)). Previous work has shown no additional sensitivity of these residues as evaluated by small‐scale safety analysis, but characterization on the molecular scale indicates the TATB is transformed to more reactive compounds as well as the residue could be precursors to toxic gases. The solids and chars were characterized by various analytical methods. Heat‐flow measurements indicated exothermic release is due to a mixture of residual TATB and related decomposition products (which may be more energetic). The N/C and O/N ratios indicated a material much more degraded than TATB. Primarily, the solids were a network of amorphous C inter‐dispersed with N and O. Types of bonding include C−C, C−N, N−H, N−C, N=C, N≡C, C−O=, and −OH. Solvent extracts of the solids showed TATB decomposition intermediates benzo‐furazans and benzo‐furoxans, substituted TATB (mono‐nitroso, hydroxyl, and chlorinated) along with several unidentified smaller molecules. These results indicate thermal treatment produces an amorphous carbon residue with heteroatoms incorporated through differing functionality, varying depending upon the thermal severity of exposure. These structures also could further decompose producing toxic light gases (such as cyanide).</description><subject>Benzene</subject><subject>Decomposition</subject><subject>Energetic materials</subject><subject>Exothermic reactions</subject><subject>Explosives safety</subject><subject>explosives safety testing</subject><subject>Exposure</subject><subject>Heat treatment</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>LX-17</subject><subject>Molecular characterization</subject><subject>Nuclear engineering</subject><subject>Nuclear safety</subject><subject>Residues</subject><subject>TATB</subject><subject>Thermal cook-off</subject><subject>Thermal decomposition</subject><subject>Thermal environments</subject><subject>Thermodynamic properties</subject><subject>Vessels</subject><issn>0721-3115</issn><issn>1521-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc9uEzEQxi0EEqFw5Wy156Qe7zq2j1UotFKkVk2LuFmud6y43bUXeytUDlUfoc_Ik-AoCI6c5t_vG83oI-QjsAUwxo_HjOOCM14L1rSvyAwEh3nLlHxNZkzWvAEQb8m7Uu4Y21EwI0_rb7-eX0DS6y3mwfb0E7o0jKmEKaRYR6utzdZNmMNPu2vR5Okm9aGjV1hC94CF-pwGukrpvuIX3tMQqaWbuqyvjY2zPdKvWAr29CZ2mCsafYg4YJzekzfe9gU__IkH5Obz6fXqbL6--HK-OlnPXaPadq6106qTSqJYamyEWt7e8hYQO_C8gXYJinVcKc-t1hIlSCUEl53suNMgsDkgh_u9qUzBFBcmdFuXYkQ3GVCgGWcVOtpDY07f62OTuUsPOda7DBetFK2qYKUWe8rlVEpGb8YcBpsfDTCzM8LsjDB_jagCvRf8CD0-_oc2l1enl_-0vwFh1Y95</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Reynolds, John G.</creator><creator>Muetterties, Nicolas K.</creator><creator>Nelson, A. J.</creator><creator>Mason, Harris E.</creator><creator>Moore, Jason S.</creator><creator>Coffee, Keith R.</creator><creator>Kahl, Evan M.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3153-063X</orcidid><orcidid>https://orcid.org/000000033153063X</orcidid></search><sort><creationdate>202107</creationdate><title>LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement</title><author>Reynolds, John G. ; Muetterties, Nicolas K. ; Nelson, A. J. ; Mason, Harris E. ; Moore, Jason S. ; Coffee, Keith R. ; Kahl, Evan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3844-99c98d787e569e3586bb241eed1f23146180d288f2a997e71785527d7d2c915e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benzene</topic><topic>Decomposition</topic><topic>Energetic materials</topic><topic>Exothermic reactions</topic><topic>Explosives safety</topic><topic>explosives safety testing</topic><topic>Exposure</topic><topic>Heat treatment</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>LX-17</topic><topic>Molecular characterization</topic><topic>Nuclear engineering</topic><topic>Nuclear safety</topic><topic>Residues</topic><topic>TATB</topic><topic>Thermal cook-off</topic><topic>Thermal decomposition</topic><topic>Thermal environments</topic><topic>Thermodynamic properties</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reynolds, John G.</creatorcontrib><creatorcontrib>Muetterties, Nicolas K.</creatorcontrib><creatorcontrib>Nelson, A. J.</creatorcontrib><creatorcontrib>Mason, Harris E.</creatorcontrib><creatorcontrib>Moore, Jason S.</creatorcontrib><creatorcontrib>Coffee, Keith R.</creatorcontrib><creatorcontrib>Kahl, Evan M.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Propellants, explosives, pyrotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynolds, John G.</au><au>Muetterties, Nicolas K.</au><au>Nelson, A. J.</au><au>Mason, Harris E.</au><au>Moore, Jason S.</au><au>Coffee, Keith R.</au><au>Kahl, Evan M.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement</atitle><jtitle>Propellants, explosives, pyrotechnics</jtitle><date>2021-07</date><risdate>2021</risdate><volume>46</volume><issue>7</issue><spage>1136</spage><epage>1149</epage><pages>1136-1149</pages><issn>0721-3115</issn><eissn>1521-4087</eissn><abstract>Concerns surround whether insensitive (or any) energetic materials are more dangerous to handle when exposed to abnormal thermal environments. This study characterizes the residual material remaining after LX‐17 (92.5 % 1,3,5‐triamino 2,4,6‐trinitro benzene (TATB) and 7.5 % Kel‐F) is exposed to various thermal environments in a sealed small‐scale vessel cook‐off test reactor (heated at 0.1 to 100 °C/min until the reactor opened at 3000 psi (20.7 MPa)). Previous work has shown no additional sensitivity of these residues as evaluated by small‐scale safety analysis, but characterization on the molecular scale indicates the TATB is transformed to more reactive compounds as well as the residue could be precursors to toxic gases. The solids and chars were characterized by various analytical methods. Heat‐flow measurements indicated exothermic release is due to a mixture of residual TATB and related decomposition products (which may be more energetic). The N/C and O/N ratios indicated a material much more degraded than TATB. Primarily, the solids were a network of amorphous C inter‐dispersed with N and O. Types of bonding include C−C, C−N, N−H, N−C, N=C, N≡C, C−O=, and −OH. Solvent extracts of the solids showed TATB decomposition intermediates benzo‐furazans and benzo‐furoxans, substituted TATB (mono‐nitroso, hydroxyl, and chlorinated) along with several unidentified smaller molecules. These results indicate thermal treatment produces an amorphous carbon residue with heteroatoms incorporated through differing functionality, varying depending upon the thermal severity of exposure. These structures also could further decompose producing toxic light gases (such as cyanide).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prep.202100034</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3153-063X</orcidid><orcidid>https://orcid.org/000000033153063X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-3115 |
ispartof | Propellants, explosives, pyrotechnics, 2021-07, Vol.46 (7), p.1136-1149 |
issn | 0721-3115 1521-4087 |
language | eng |
recordid | cdi_osti_scitechconnect_1819020 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Benzene Decomposition Energetic materials Exothermic reactions Explosives safety explosives safety testing Exposure Heat treatment INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY LX-17 Molecular characterization Nuclear engineering Nuclear safety Residues TATB Thermal cook-off Thermal decomposition Thermal environments Thermodynamic properties Vessels |
title | LX‐17 Thermal Decomposition‐Characterization of Solid Residues from Cook‐Off in a Small‐Scale Vessel Under Confinement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LX%E2%80%9017%20Thermal%20Decomposition%E2%80%90Characterization%20of%20Solid%20Residues%20from%20Cook%E2%80%90Off%20in%20a%20Small%E2%80%90Scale%20Vessel%20Under%20Confinement&rft.jtitle=Propellants,%20explosives,%20pyrotechnics&rft.au=Reynolds,%20John%20G.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-07&rft.volume=46&rft.issue=7&rft.spage=1136&rft.epage=1149&rft.pages=1136-1149&rft.issn=0721-3115&rft.eissn=1521-4087&rft_id=info:doi/10.1002/prep.202100034&rft_dat=%3Cproquest_osti_%3E2547548819%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547548819&rft_id=info:pmid/&rfr_iscdi=true |