Spatial and temporal variation of hardness of a printed steel part

Several key industries routinely make complex parts using metal printing, but its continued growth will require the ability to control the microstructure and properties of parts. Many process variables affect the spatially variable thermal cycles that affect the microstructure and properties of part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2021-05, Vol.209 (C), p.116775, Article 116775
Hauptverfasser: Mukherjee, T., DebRoy, T., Lienert, T.J., Maloy, S.A., Hosemann, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 116775
container_title Acta materialia
container_volume 209
creator Mukherjee, T.
DebRoy, T.
Lienert, T.J.
Maloy, S.A.
Hosemann, P.
description Several key industries routinely make complex parts using metal printing, but its continued growth will require the ability to control the microstructure and properties of parts. Many process variables affect the spatially variable thermal cycles that affect the microstructure and properties of parts. Here we show that the evolution of hardness of a tool steel part at various locations can be calculated using computed thermal cycles and a Johnson-Mehl-Avrami kinetic relation. The calculated hardness values agreed well with the independent experimental data for various processing conditions. At a given location, the hardness continued to decrease with progressive thermal cycles. Lower layers of the part experienced continued thermal cycles during the deposition of upper layers and the hardness decreased with distance from the top of the deposit. High heat input due to high laser power and slow scanning speed resulted in low cooling rate, high temperature, more pronounced tempering of martensite, and low hardness. Since the model can predict the spatial variation of hardness as a function of process variables, the work can serve as a basis for tailoring the hardness of some additively manufactured parts. [Display omitted]
doi_str_mv 10.1016/j.actamat.2021.116775
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1818600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645421001555</els_id><sourcerecordid>S1359645421001555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e22ecd94586a357c85f93d2c160613ae09d1e0666467f4cef07deee526786ac3</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4EIXjfNd_ZPYkWv6Dgwd5DSGZpSptdklDw35tlvXuaN8N7b2YeQveUtJRQ9XhorSv2ZEvLCKMtpUpreYFWtNO8YULyy4q57BslpLhGNzkfCKFMC7JCL9-TLcEesY0eFzhNY6rN2aZQx2PE44D3NvkIOc_Y4imFWMDjXACOeLKp3KKrwR4z3P3VNdq9ve42H8326_1z87xtHO94aYAxcL4XslOWS-06OfTcM0cVUZRbIL2nQJRSQulBOBiI9gAgmdJV4fgaPSy2Yy7BZBcKuL0bYwRXDO1opwipJLmQXBpzTjCYeu_Jph9DiZnDMgfzF5aZwzJLWFX3tOigPnAOkOYFEB34kGZ_P4Z_HH4BAQd0xQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatial and temporal variation of hardness of a printed steel part</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mukherjee, T. ; DebRoy, T. ; Lienert, T.J. ; Maloy, S.A. ; Hosemann, P.</creator><creatorcontrib>Mukherjee, T. ; DebRoy, T. ; Lienert, T.J. ; Maloy, S.A. ; Hosemann, P.</creatorcontrib><description>Several key industries routinely make complex parts using metal printing, but its continued growth will require the ability to control the microstructure and properties of parts. Many process variables affect the spatially variable thermal cycles that affect the microstructure and properties of parts. Here we show that the evolution of hardness of a tool steel part at various locations can be calculated using computed thermal cycles and a Johnson-Mehl-Avrami kinetic relation. The calculated hardness values agreed well with the independent experimental data for various processing conditions. At a given location, the hardness continued to decrease with progressive thermal cycles. Lower layers of the part experienced continued thermal cycles during the deposition of upper layers and the hardness decreased with distance from the top of the deposit. High heat input due to high laser power and slow scanning speed resulted in low cooling rate, high temperature, more pronounced tempering of martensite, and low hardness. Since the model can predict the spatial variation of hardness as a function of process variables, the work can serve as a basis for tailoring the hardness of some additively manufactured parts. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2021.116775</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>3D printing ; Additive manufacturing ; Heat transfer and fluid flow ; Johnson-Mehl-Avrami ; Martensite</subject><ispartof>Acta materialia, 2021-05, Vol.209 (C), p.116775, Article 116775</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-e22ecd94586a357c85f93d2c160613ae09d1e0666467f4cef07deee526786ac3</citedby><cites>FETCH-LOGICAL-c383t-e22ecd94586a357c85f93d2c160613ae09d1e0666467f4cef07deee526786ac3</cites><orcidid>0000-0003-2281-2213 ; 0000-0001-5372-4887 ; 0000-0001-8037-1319 ; 0000000322812213 ; 0000000180371319 ; 0000000153724887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2021.116775$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1818600$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, T.</creatorcontrib><creatorcontrib>DebRoy, T.</creatorcontrib><creatorcontrib>Lienert, T.J.</creatorcontrib><creatorcontrib>Maloy, S.A.</creatorcontrib><creatorcontrib>Hosemann, P.</creatorcontrib><title>Spatial and temporal variation of hardness of a printed steel part</title><title>Acta materialia</title><description>Several key industries routinely make complex parts using metal printing, but its continued growth will require the ability to control the microstructure and properties of parts. Many process variables affect the spatially variable thermal cycles that affect the microstructure and properties of parts. Here we show that the evolution of hardness of a tool steel part at various locations can be calculated using computed thermal cycles and a Johnson-Mehl-Avrami kinetic relation. The calculated hardness values agreed well with the independent experimental data for various processing conditions. At a given location, the hardness continued to decrease with progressive thermal cycles. Lower layers of the part experienced continued thermal cycles during the deposition of upper layers and the hardness decreased with distance from the top of the deposit. High heat input due to high laser power and slow scanning speed resulted in low cooling rate, high temperature, more pronounced tempering of martensite, and low hardness. Since the model can predict the spatial variation of hardness as a function of process variables, the work can serve as a basis for tailoring the hardness of some additively manufactured parts. [Display omitted]</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Heat transfer and fluid flow</subject><subject>Johnson-Mehl-Avrami</subject><subject>Martensite</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4EIXjfNd_ZPYkWv6Dgwd5DSGZpSptdklDw35tlvXuaN8N7b2YeQveUtJRQ9XhorSv2ZEvLCKMtpUpreYFWtNO8YULyy4q57BslpLhGNzkfCKFMC7JCL9-TLcEesY0eFzhNY6rN2aZQx2PE44D3NvkIOc_Y4imFWMDjXACOeLKp3KKrwR4z3P3VNdq9ve42H8326_1z87xtHO94aYAxcL4XslOWS-06OfTcM0cVUZRbIL2nQJRSQulBOBiI9gAgmdJV4fgaPSy2Yy7BZBcKuL0bYwRXDO1opwipJLmQXBpzTjCYeu_Jph9DiZnDMgfzF5aZwzJLWFX3tOigPnAOkOYFEB34kGZ_P4Z_HH4BAQd0xQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Mukherjee, T.</creator><creator>DebRoy, T.</creator><creator>Lienert, T.J.</creator><creator>Maloy, S.A.</creator><creator>Hosemann, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2281-2213</orcidid><orcidid>https://orcid.org/0000-0001-5372-4887</orcidid><orcidid>https://orcid.org/0000-0001-8037-1319</orcidid><orcidid>https://orcid.org/0000000322812213</orcidid><orcidid>https://orcid.org/0000000180371319</orcidid><orcidid>https://orcid.org/0000000153724887</orcidid></search><sort><creationdate>20210501</creationdate><title>Spatial and temporal variation of hardness of a printed steel part</title><author>Mukherjee, T. ; DebRoy, T. ; Lienert, T.J. ; Maloy, S.A. ; Hosemann, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e22ecd94586a357c85f93d2c160613ae09d1e0666467f4cef07deee526786ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Heat transfer and fluid flow</topic><topic>Johnson-Mehl-Avrami</topic><topic>Martensite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, T.</creatorcontrib><creatorcontrib>DebRoy, T.</creatorcontrib><creatorcontrib>Lienert, T.J.</creatorcontrib><creatorcontrib>Maloy, S.A.</creatorcontrib><creatorcontrib>Hosemann, P.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, T.</au><au>DebRoy, T.</au><au>Lienert, T.J.</au><au>Maloy, S.A.</au><au>Hosemann, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial and temporal variation of hardness of a printed steel part</atitle><jtitle>Acta materialia</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>209</volume><issue>C</issue><spage>116775</spage><pages>116775-</pages><artnum>116775</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Several key industries routinely make complex parts using metal printing, but its continued growth will require the ability to control the microstructure and properties of parts. Many process variables affect the spatially variable thermal cycles that affect the microstructure and properties of parts. Here we show that the evolution of hardness of a tool steel part at various locations can be calculated using computed thermal cycles and a Johnson-Mehl-Avrami kinetic relation. The calculated hardness values agreed well with the independent experimental data for various processing conditions. At a given location, the hardness continued to decrease with progressive thermal cycles. Lower layers of the part experienced continued thermal cycles during the deposition of upper layers and the hardness decreased with distance from the top of the deposit. High heat input due to high laser power and slow scanning speed resulted in low cooling rate, high temperature, more pronounced tempering of martensite, and low hardness. Since the model can predict the spatial variation of hardness as a function of process variables, the work can serve as a basis for tailoring the hardness of some additively manufactured parts. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2021.116775</doi><orcidid>https://orcid.org/0000-0003-2281-2213</orcidid><orcidid>https://orcid.org/0000-0001-5372-4887</orcidid><orcidid>https://orcid.org/0000-0001-8037-1319</orcidid><orcidid>https://orcid.org/0000000322812213</orcidid><orcidid>https://orcid.org/0000000180371319</orcidid><orcidid>https://orcid.org/0000000153724887</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2021-05, Vol.209 (C), p.116775, Article 116775
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1818600
source Access via ScienceDirect (Elsevier)
subjects 3D printing
Additive manufacturing
Heat transfer and fluid flow
Johnson-Mehl-Avrami
Martensite
title Spatial and temporal variation of hardness of a printed steel part
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20and%20temporal%20variation%20of%20hardness%20of%20a%20printed%20steel%20part&rft.jtitle=Acta%20materialia&rft.au=Mukherjee,%20T.&rft.date=2021-05-01&rft.volume=209&rft.issue=C&rft.spage=116775&rft.pages=116775-&rft.artnum=116775&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2021.116775&rft_dat=%3Celsevier_osti_%3ES1359645421001555%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645421001555&rfr_iscdi=true