Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond

Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-06, Vol.12 (22), p.5286-5293
Hauptverfasser: Hammons, Joshua A, Nielsen, Michael H, Bagge-Hansen, Michael, Bastea, Sorin, May, Chadd, Shaw, William L, Martin, Aiden, Li, Yuelin, Sinclair, Nicholas, Lauderbach, Lisa M, Hodgin, Ralph L, Orlikowski, Daniel A, Fried, Laurence E, Willey, Trevor M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5293
container_issue 22
container_start_page 5286
container_title The journal of physical chemistry letters
container_volume 12
creator Hammons, Joshua A
Nielsen, Michael H
Bagge-Hansen, Michael
Bastea, Sorin
May, Chadd
Shaw, William L
Martin, Aiden
Li, Yuelin
Sinclair, Nicholas
Lauderbach, Lisa M
Hodgin, Ralph L
Orlikowski, Daniel A
Fried, Laurence E
Willey, Trevor M
description Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches to limit aggregation. To answer this question, time-resolved small-angle X-ray scattering was performed during the detonation of high-explosives that are expected to condense particulates in the diamond, graphite, and liquid regions of the carbon phase diagram. DND aggregation into low fractal dimension structures could be observed as early as 0.1 μs, along with a separate scattering population also observed from an explosive that produces primarily graphitic products. A counterexample is the case of a high-explosive that produces nano-onions, where no hierarchical scattering was observed for at least 10 μs behind the detonation front. These results suggest that DND aggregation occurs on time scales comparable to particle formation.
doi_str_mv 10.1021/acs.jpclett.1c01209
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1818498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536466467</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-90a441b9ad2c02176cdef2b716763fd1192d4115b74f2946fbf97e40daa31d2f3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEmPwC7hUnLh0i9OsaY7TGB_SBIfBOUrzsWVak9Gkh_17MroDJyRLtuz3tewny-4BTQBhmAoZJruD3OsYJyARYMQushEwUhcU6tnln_o6uwlhh1DFUE1H2XLdN62VnQ9aeqfy-WbT6Y2I1rtc9Z11m_xJR--Gzvro4lYHG3Jv8nfhvLKiTbbb7MqIfdB35zzOvp6Xn4vXYvXx8raYrwqBKYsFQ4IQaJhQWKazaSWVNrihUNGqNAqAYUUAZg0lBjNSmcYwqglSQpSgsCnH2cOw14doeZA2arlNdzstI4caasLqJHocRIfOf_c6RN7aIPV-L5z2feB4VlakSkGTtBykJwCh04YfOtuK7sgB8RNZnsjyM1l-Jptc08H1O_R959LP_zp-AKvKf58</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536466467</pqid></control><display><type>article</type><title>Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond</title><source>American Chemical Society Journals</source><creator>Hammons, Joshua A ; Nielsen, Michael H ; Bagge-Hansen, Michael ; Bastea, Sorin ; May, Chadd ; Shaw, William L ; Martin, Aiden ; Li, Yuelin ; Sinclair, Nicholas ; Lauderbach, Lisa M ; Hodgin, Ralph L ; Orlikowski, Daniel A ; Fried, Laurence E ; Willey, Trevor M</creator><creatorcontrib>Hammons, Joshua A ; Nielsen, Michael H ; Bagge-Hansen, Michael ; Bastea, Sorin ; May, Chadd ; Shaw, William L ; Martin, Aiden ; Li, Yuelin ; Sinclair, Nicholas ; Lauderbach, Lisa M ; Hodgin, Ralph L ; Orlikowski, Daniel A ; Fried, Laurence E ; Willey, Trevor M ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches to limit aggregation. To answer this question, time-resolved small-angle X-ray scattering was performed during the detonation of high-explosives that are expected to condense particulates in the diamond, graphite, and liquid regions of the carbon phase diagram. DND aggregation into low fractal dimension structures could be observed as early as 0.1 μs, along with a separate scattering population also observed from an explosive that produces primarily graphitic products. A counterexample is the case of a high-explosive that produces nano-onions, where no hierarchical scattering was observed for at least 10 μs behind the detonation front. These results suggest that DND aggregation occurs on time scales comparable to particle formation.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c01209</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aggregation ; Carbon condensation ; Composition B ; Detonation ; DNTF ; High-explosive ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Materials science, Physics - Condensed matter physics, Nanoscience and Nanotechnology, Chemistry - Chemical explosives ; Nanodiamond ; Octol ; Physical Insights into Chemistry, Catalysis, and Interfaces ; Small angle scattering ; UFTATB</subject><ispartof>The journal of physical chemistry letters, 2021-06, Vol.12 (22), p.5286-5293</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a279t-90a441b9ad2c02176cdef2b716763fd1192d4115b74f2946fbf97e40daa31d2f3</citedby><cites>FETCH-LOGICAL-a279t-90a441b9ad2c02176cdef2b716763fd1192d4115b74f2946fbf97e40daa31d2f3</cites><orcidid>0000-0002-9437-7700 ; 0000-0003-2362-5524 ; 0000-0003-0107-1954 ; 0000000323625524 ; 0000000301071954 ; 0000000294377700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c01209$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c01209$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1818498$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammons, Joshua A</creatorcontrib><creatorcontrib>Nielsen, Michael H</creatorcontrib><creatorcontrib>Bagge-Hansen, Michael</creatorcontrib><creatorcontrib>Bastea, Sorin</creatorcontrib><creatorcontrib>May, Chadd</creatorcontrib><creatorcontrib>Shaw, William L</creatorcontrib><creatorcontrib>Martin, Aiden</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><creatorcontrib>Sinclair, Nicholas</creatorcontrib><creatorcontrib>Lauderbach, Lisa M</creatorcontrib><creatorcontrib>Hodgin, Ralph L</creatorcontrib><creatorcontrib>Orlikowski, Daniel A</creatorcontrib><creatorcontrib>Fried, Laurence E</creatorcontrib><creatorcontrib>Willey, Trevor M</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches to limit aggregation. To answer this question, time-resolved small-angle X-ray scattering was performed during the detonation of high-explosives that are expected to condense particulates in the diamond, graphite, and liquid regions of the carbon phase diagram. DND aggregation into low fractal dimension structures could be observed as early as 0.1 μs, along with a separate scattering population also observed from an explosive that produces primarily graphitic products. A counterexample is the case of a high-explosive that produces nano-onions, where no hierarchical scattering was observed for at least 10 μs behind the detonation front. These results suggest that DND aggregation occurs on time scales comparable to particle formation.</description><subject>Aggregation</subject><subject>Carbon condensation</subject><subject>Composition B</subject><subject>Detonation</subject><subject>DNTF</subject><subject>High-explosive</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Materials science, Physics - Condensed matter physics, Nanoscience and Nanotechnology, Chemistry - Chemical explosives</subject><subject>Nanodiamond</subject><subject>Octol</subject><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><subject>Small angle scattering</subject><subject>UFTATB</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhisEEmPwC7hUnLh0i9OsaY7TGB_SBIfBOUrzsWVak9Gkh_17MroDJyRLtuz3tewny-4BTQBhmAoZJruD3OsYJyARYMQushEwUhcU6tnln_o6uwlhh1DFUE1H2XLdN62VnQ9aeqfy-WbT6Y2I1rtc9Z11m_xJR--Gzvro4lYHG3Jv8nfhvLKiTbbb7MqIfdB35zzOvp6Xn4vXYvXx8raYrwqBKYsFQ4IQaJhQWKazaSWVNrihUNGqNAqAYUUAZg0lBjNSmcYwqglSQpSgsCnH2cOw14doeZA2arlNdzstI4caasLqJHocRIfOf_c6RN7aIPV-L5z2feB4VlakSkGTtBykJwCh04YfOtuK7sgB8RNZnsjyM1l-Jptc08H1O_R959LP_zp-AKvKf58</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Hammons, Joshua A</creator><creator>Nielsen, Michael H</creator><creator>Bagge-Hansen, Michael</creator><creator>Bastea, Sorin</creator><creator>May, Chadd</creator><creator>Shaw, William L</creator><creator>Martin, Aiden</creator><creator>Li, Yuelin</creator><creator>Sinclair, Nicholas</creator><creator>Lauderbach, Lisa M</creator><creator>Hodgin, Ralph L</creator><creator>Orlikowski, Daniel A</creator><creator>Fried, Laurence E</creator><creator>Willey, Trevor M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9437-7700</orcidid><orcidid>https://orcid.org/0000-0003-2362-5524</orcidid><orcidid>https://orcid.org/0000-0003-0107-1954</orcidid><orcidid>https://orcid.org/0000000323625524</orcidid><orcidid>https://orcid.org/0000000301071954</orcidid><orcidid>https://orcid.org/0000000294377700</orcidid></search><sort><creationdate>20210610</creationdate><title>Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond</title><author>Hammons, Joshua A ; Nielsen, Michael H ; Bagge-Hansen, Michael ; Bastea, Sorin ; May, Chadd ; Shaw, William L ; Martin, Aiden ; Li, Yuelin ; Sinclair, Nicholas ; Lauderbach, Lisa M ; Hodgin, Ralph L ; Orlikowski, Daniel A ; Fried, Laurence E ; Willey, Trevor M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-90a441b9ad2c02176cdef2b716763fd1192d4115b74f2946fbf97e40daa31d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregation</topic><topic>Carbon condensation</topic><topic>Composition B</topic><topic>Detonation</topic><topic>DNTF</topic><topic>High-explosive</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Materials science, Physics - Condensed matter physics, Nanoscience and Nanotechnology, Chemistry - Chemical explosives</topic><topic>Nanodiamond</topic><topic>Octol</topic><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><topic>Small angle scattering</topic><topic>UFTATB</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammons, Joshua A</creatorcontrib><creatorcontrib>Nielsen, Michael H</creatorcontrib><creatorcontrib>Bagge-Hansen, Michael</creatorcontrib><creatorcontrib>Bastea, Sorin</creatorcontrib><creatorcontrib>May, Chadd</creatorcontrib><creatorcontrib>Shaw, William L</creatorcontrib><creatorcontrib>Martin, Aiden</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><creatorcontrib>Sinclair, Nicholas</creatorcontrib><creatorcontrib>Lauderbach, Lisa M</creatorcontrib><creatorcontrib>Hodgin, Ralph L</creatorcontrib><creatorcontrib>Orlikowski, Daniel A</creatorcontrib><creatorcontrib>Fried, Laurence E</creatorcontrib><creatorcontrib>Willey, Trevor M</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammons, Joshua A</au><au>Nielsen, Michael H</au><au>Bagge-Hansen, Michael</au><au>Bastea, Sorin</au><au>May, Chadd</au><au>Shaw, William L</au><au>Martin, Aiden</au><au>Li, Yuelin</au><au>Sinclair, Nicholas</au><au>Lauderbach, Lisa M</au><au>Hodgin, Ralph L</au><au>Orlikowski, Daniel A</au><au>Fried, Laurence E</au><au>Willey, Trevor M</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-06-10</date><risdate>2021</risdate><volume>12</volume><issue>22</issue><spage>5286</spage><epage>5293</epage><pages>5286-5293</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches to limit aggregation. To answer this question, time-resolved small-angle X-ray scattering was performed during the detonation of high-explosives that are expected to condense particulates in the diamond, graphite, and liquid regions of the carbon phase diagram. DND aggregation into low fractal dimension structures could be observed as early as 0.1 μs, along with a separate scattering population also observed from an explosive that produces primarily graphitic products. A counterexample is the case of a high-explosive that produces nano-onions, where no hierarchical scattering was observed for at least 10 μs behind the detonation front. These results suggest that DND aggregation occurs on time scales comparable to particle formation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.1c01209</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9437-7700</orcidid><orcidid>https://orcid.org/0000-0003-2362-5524</orcidid><orcidid>https://orcid.org/0000-0003-0107-1954</orcidid><orcidid>https://orcid.org/0000000323625524</orcidid><orcidid>https://orcid.org/0000000301071954</orcidid><orcidid>https://orcid.org/0000000294377700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-06, Vol.12 (22), p.5286-5293
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_1818498
source American Chemical Society Journals
subjects Aggregation
Carbon condensation
Composition B
Detonation
DNTF
High-explosive
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Materials science, Physics - Condensed matter physics, Nanoscience and Nanotechnology, Chemistry - Chemical explosives
Nanodiamond
Octol
Physical Insights into Chemistry, Catalysis, and Interfaces
Small angle scattering
UFTATB
title Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Submicrosecond%20Aggregation%20during%20Detonation%20Synthesis%20of%20Nanodiamond&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Hammons,%20Joshua%20A&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-06-10&rft.volume=12&rft.issue=22&rft.spage=5286&rft.epage=5293&rft.pages=5286-5293&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c01209&rft_dat=%3Cproquest_osti_%3E2536466467%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536466467&rft_id=info:pmid/&rfr_iscdi=true