Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond
Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2021-06, Vol.12 (22), p.5286-5293 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5293 |
---|---|
container_issue | 22 |
container_start_page | 5286 |
container_title | The journal of physical chemistry letters |
container_volume | 12 |
creator | Hammons, Joshua A Nielsen, Michael H Bagge-Hansen, Michael Bastea, Sorin May, Chadd Shaw, William L Martin, Aiden Li, Yuelin Sinclair, Nicholas Lauderbach, Lisa M Hodgin, Ralph L Orlikowski, Daniel A Fried, Laurence E Willey, Trevor M |
description | Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches to limit aggregation. To answer this question, time-resolved small-angle X-ray scattering was performed during the detonation of high-explosives that are expected to condense particulates in the diamond, graphite, and liquid regions of the carbon phase diagram. DND aggregation into low fractal dimension structures could be observed as early as 0.1 μs, along with a separate scattering population also observed from an explosive that produces primarily graphitic products. A counterexample is the case of a high-explosive that produces nano-onions, where no hierarchical scattering was observed for at least 10 μs behind the detonation front. These results suggest that DND aggregation occurs on time scales comparable to particle formation. |
doi_str_mv | 10.1021/acs.jpclett.1c01209 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1818498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536466467</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-90a441b9ad2c02176cdef2b716763fd1192d4115b74f2946fbf97e40daa31d2f3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEmPwC7hUnLh0i9OsaY7TGB_SBIfBOUrzsWVak9Gkh_17MroDJyRLtuz3tewny-4BTQBhmAoZJruD3OsYJyARYMQushEwUhcU6tnln_o6uwlhh1DFUE1H2XLdN62VnQ9aeqfy-WbT6Y2I1rtc9Z11m_xJR--Gzvro4lYHG3Jv8nfhvLKiTbbb7MqIfdB35zzOvp6Xn4vXYvXx8raYrwqBKYsFQ4IQaJhQWKazaSWVNrihUNGqNAqAYUUAZg0lBjNSmcYwqglSQpSgsCnH2cOw14doeZA2arlNdzstI4caasLqJHocRIfOf_c6RN7aIPV-L5z2feB4VlakSkGTtBykJwCh04YfOtuK7sgB8RNZnsjyM1l-Jptc08H1O_R959LP_zp-AKvKf58</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536466467</pqid></control><display><type>article</type><title>Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond</title><source>American Chemical Society Journals</source><creator>Hammons, Joshua A ; Nielsen, Michael H ; Bagge-Hansen, Michael ; Bastea, Sorin ; May, Chadd ; Shaw, William L ; Martin, Aiden ; Li, Yuelin ; Sinclair, Nicholas ; Lauderbach, Lisa M ; Hodgin, Ralph L ; Orlikowski, Daniel A ; Fried, Laurence E ; Willey, Trevor M</creator><creatorcontrib>Hammons, Joshua A ; Nielsen, Michael H ; Bagge-Hansen, Michael ; Bastea, Sorin ; May, Chadd ; Shaw, William L ; Martin, Aiden ; Li, Yuelin ; Sinclair, Nicholas ; Lauderbach, Lisa M ; Hodgin, Ralph L ; Orlikowski, Daniel A ; Fried, Laurence E ; Willey, Trevor M ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches to limit aggregation. To answer this question, time-resolved small-angle X-ray scattering was performed during the detonation of high-explosives that are expected to condense particulates in the diamond, graphite, and liquid regions of the carbon phase diagram. DND aggregation into low fractal dimension structures could be observed as early as 0.1 μs, along with a separate scattering population also observed from an explosive that produces primarily graphitic products. A counterexample is the case of a high-explosive that produces nano-onions, where no hierarchical scattering was observed for at least 10 μs behind the detonation front. These results suggest that DND aggregation occurs on time scales comparable to particle formation.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c01209</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aggregation ; Carbon condensation ; Composition B ; Detonation ; DNTF ; High-explosive ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Materials science, Physics - Condensed matter physics, Nanoscience and Nanotechnology, Chemistry - Chemical explosives ; Nanodiamond ; Octol ; Physical Insights into Chemistry, Catalysis, and Interfaces ; Small angle scattering ; UFTATB</subject><ispartof>The journal of physical chemistry letters, 2021-06, Vol.12 (22), p.5286-5293</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a279t-90a441b9ad2c02176cdef2b716763fd1192d4115b74f2946fbf97e40daa31d2f3</citedby><cites>FETCH-LOGICAL-a279t-90a441b9ad2c02176cdef2b716763fd1192d4115b74f2946fbf97e40daa31d2f3</cites><orcidid>0000-0002-9437-7700 ; 0000-0003-2362-5524 ; 0000-0003-0107-1954 ; 0000000323625524 ; 0000000301071954 ; 0000000294377700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c01209$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c01209$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1818498$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammons, Joshua A</creatorcontrib><creatorcontrib>Nielsen, Michael H</creatorcontrib><creatorcontrib>Bagge-Hansen, Michael</creatorcontrib><creatorcontrib>Bastea, Sorin</creatorcontrib><creatorcontrib>May, Chadd</creatorcontrib><creatorcontrib>Shaw, William L</creatorcontrib><creatorcontrib>Martin, Aiden</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><creatorcontrib>Sinclair, Nicholas</creatorcontrib><creatorcontrib>Lauderbach, Lisa M</creatorcontrib><creatorcontrib>Hodgin, Ralph L</creatorcontrib><creatorcontrib>Orlikowski, Daniel A</creatorcontrib><creatorcontrib>Fried, Laurence E</creatorcontrib><creatorcontrib>Willey, Trevor M</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches to limit aggregation. To answer this question, time-resolved small-angle X-ray scattering was performed during the detonation of high-explosives that are expected to condense particulates in the diamond, graphite, and liquid regions of the carbon phase diagram. DND aggregation into low fractal dimension structures could be observed as early as 0.1 μs, along with a separate scattering population also observed from an explosive that produces primarily graphitic products. A counterexample is the case of a high-explosive that produces nano-onions, where no hierarchical scattering was observed for at least 10 μs behind the detonation front. These results suggest that DND aggregation occurs on time scales comparable to particle formation.</description><subject>Aggregation</subject><subject>Carbon condensation</subject><subject>Composition B</subject><subject>Detonation</subject><subject>DNTF</subject><subject>High-explosive</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Materials science, Physics - Condensed matter physics, Nanoscience and Nanotechnology, Chemistry - Chemical explosives</subject><subject>Nanodiamond</subject><subject>Octol</subject><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><subject>Small angle scattering</subject><subject>UFTATB</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhisEEmPwC7hUnLh0i9OsaY7TGB_SBIfBOUrzsWVak9Gkh_17MroDJyRLtuz3tewny-4BTQBhmAoZJruD3OsYJyARYMQushEwUhcU6tnln_o6uwlhh1DFUE1H2XLdN62VnQ9aeqfy-WbT6Y2I1rtc9Z11m_xJR--Gzvro4lYHG3Jv8nfhvLKiTbbb7MqIfdB35zzOvp6Xn4vXYvXx8raYrwqBKYsFQ4IQaJhQWKazaSWVNrihUNGqNAqAYUUAZg0lBjNSmcYwqglSQpSgsCnH2cOw14doeZA2arlNdzstI4caasLqJHocRIfOf_c6RN7aIPV-L5z2feB4VlakSkGTtBykJwCh04YfOtuK7sgB8RNZnsjyM1l-Jptc08H1O_R959LP_zp-AKvKf58</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Hammons, Joshua A</creator><creator>Nielsen, Michael H</creator><creator>Bagge-Hansen, Michael</creator><creator>Bastea, Sorin</creator><creator>May, Chadd</creator><creator>Shaw, William L</creator><creator>Martin, Aiden</creator><creator>Li, Yuelin</creator><creator>Sinclair, Nicholas</creator><creator>Lauderbach, Lisa M</creator><creator>Hodgin, Ralph L</creator><creator>Orlikowski, Daniel A</creator><creator>Fried, Laurence E</creator><creator>Willey, Trevor M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9437-7700</orcidid><orcidid>https://orcid.org/0000-0003-2362-5524</orcidid><orcidid>https://orcid.org/0000-0003-0107-1954</orcidid><orcidid>https://orcid.org/0000000323625524</orcidid><orcidid>https://orcid.org/0000000301071954</orcidid><orcidid>https://orcid.org/0000000294377700</orcidid></search><sort><creationdate>20210610</creationdate><title>Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond</title><author>Hammons, Joshua A ; Nielsen, Michael H ; Bagge-Hansen, Michael ; Bastea, Sorin ; May, Chadd ; Shaw, William L ; Martin, Aiden ; Li, Yuelin ; Sinclair, Nicholas ; Lauderbach, Lisa M ; Hodgin, Ralph L ; Orlikowski, Daniel A ; Fried, Laurence E ; Willey, Trevor M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-90a441b9ad2c02176cdef2b716763fd1192d4115b74f2946fbf97e40daa31d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregation</topic><topic>Carbon condensation</topic><topic>Composition B</topic><topic>Detonation</topic><topic>DNTF</topic><topic>High-explosive</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Materials science, Physics - Condensed matter physics, Nanoscience and Nanotechnology, Chemistry - Chemical explosives</topic><topic>Nanodiamond</topic><topic>Octol</topic><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><topic>Small angle scattering</topic><topic>UFTATB</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammons, Joshua A</creatorcontrib><creatorcontrib>Nielsen, Michael H</creatorcontrib><creatorcontrib>Bagge-Hansen, Michael</creatorcontrib><creatorcontrib>Bastea, Sorin</creatorcontrib><creatorcontrib>May, Chadd</creatorcontrib><creatorcontrib>Shaw, William L</creatorcontrib><creatorcontrib>Martin, Aiden</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><creatorcontrib>Sinclair, Nicholas</creatorcontrib><creatorcontrib>Lauderbach, Lisa M</creatorcontrib><creatorcontrib>Hodgin, Ralph L</creatorcontrib><creatorcontrib>Orlikowski, Daniel A</creatorcontrib><creatorcontrib>Fried, Laurence E</creatorcontrib><creatorcontrib>Willey, Trevor M</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammons, Joshua A</au><au>Nielsen, Michael H</au><au>Bagge-Hansen, Michael</au><au>Bastea, Sorin</au><au>May, Chadd</au><au>Shaw, William L</au><au>Martin, Aiden</au><au>Li, Yuelin</au><au>Sinclair, Nicholas</au><au>Lauderbach, Lisa M</au><au>Hodgin, Ralph L</au><au>Orlikowski, Daniel A</au><au>Fried, Laurence E</au><au>Willey, Trevor M</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-06-10</date><risdate>2021</risdate><volume>12</volume><issue>22</issue><spage>5286</spage><epage>5293</epage><pages>5286-5293</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches to limit aggregation. To answer this question, time-resolved small-angle X-ray scattering was performed during the detonation of high-explosives that are expected to condense particulates in the diamond, graphite, and liquid regions of the carbon phase diagram. DND aggregation into low fractal dimension structures could be observed as early as 0.1 μs, along with a separate scattering population also observed from an explosive that produces primarily graphitic products. A counterexample is the case of a high-explosive that produces nano-onions, where no hierarchical scattering was observed for at least 10 μs behind the detonation front. These results suggest that DND aggregation occurs on time scales comparable to particle formation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.1c01209</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9437-7700</orcidid><orcidid>https://orcid.org/0000-0003-2362-5524</orcidid><orcidid>https://orcid.org/0000-0003-0107-1954</orcidid><orcidid>https://orcid.org/0000000323625524</orcidid><orcidid>https://orcid.org/0000000301071954</orcidid><orcidid>https://orcid.org/0000000294377700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2021-06, Vol.12 (22), p.5286-5293 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_osti_scitechconnect_1818498 |
source | American Chemical Society Journals |
subjects | Aggregation Carbon condensation Composition B Detonation DNTF High-explosive INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Materials science, Physics - Condensed matter physics, Nanoscience and Nanotechnology, Chemistry - Chemical explosives Nanodiamond Octol Physical Insights into Chemistry, Catalysis, and Interfaces Small angle scattering UFTATB |
title | Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Submicrosecond%20Aggregation%20during%20Detonation%20Synthesis%20of%20Nanodiamond&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Hammons,%20Joshua%20A&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-06-10&rft.volume=12&rft.issue=22&rft.spage=5286&rft.epage=5293&rft.pages=5286-5293&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c01209&rft_dat=%3Cproquest_osti_%3E2536466467%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536466467&rft_id=info:pmid/&rfr_iscdi=true |