Progress of Divertor Heat and Particle Flux Control in EAST for Advanced Steady-State Operation in the Last 10 Years
Active control of the excessively high heat and particle fluxes on the divertor target plates is of fundamental importance to the steady state operation of tokamaks, especially for fusion reactors. A series of experiments have been carried out on this critical issue to relieve the plasma-wall intera...
Gespeichert in:
Veröffentlicht in: | Journal of fusion energy 2021-06, Vol.40 (1), p.3, Article 3 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Journal of fusion energy |
container_volume | 40 |
creator | Wang, L. Xu, G. S. Hu, J. S. Li, K. D. Yuan, Q. P. Liu, J. B. Ding, F. Yu, Y. W. Luo, Z. P. Xu, J. C. Meng, L. Y. Wu, K. Zhang, B. Chen, M. W. Deng, G. Z. Liu, X. J. Yang, Z. S. Liu, X. Liu, S. C. Ding, R. Zuo, G. Z. Sun, Z. Wu, J. H. Cao, B. Zhang, Y. Duan, Y. M. Zhang, L. Qian, X. Y. Li, A. Chen, L. Jia, M. N. Si, H. Xia, T. Y. Sun, Y. W. Chen, Y. P. Li, Q. Luo, G. N. Yao, D. M. Xiao, B. J. Gong, X. Z. Zhang, X. D. Wan, B. N. Wang, H. Q. Guo, H. Y. Eldon, D. Garofalo, A. M. Liang, Y. Xu, S. Sang, C. F. Wang, D. Z. Dai, S. Y. Sun, J. Z. Ding, H. B. Maingi, R. Gan, K. F. Zou, X. L. Du, H. L. |
description | Active control of the excessively high heat and particle fluxes on the divertor target plates is of fundamental importance to the steady state operation of tokamaks, especially for fusion reactors. A series of experiments have been carried out on this critical issue to relieve the plasma-wall interactions in the experimental advanced superconducting tokamak (EAST) in the last ten years, not only contributing to the long pulse operation of EAST itself, but also providing physical understandings and potential techniques to the next-generation devices like ITER. We have characterized the power deposition pattern and broadened the divertor footprint width effectively. The plasma-wetted area is actively handled using either 3-dimentional edge magnetic topology or advanced plasma equilibrium, thereby peak heat flux around the strike point is reduced. Active control of detachment or radiation compatible with core plasma performance has progressed significantly in very recent years, with a series of active feedback control modules developed and utilized successfully, based on the divertor physics advances with both experiments and simulation. The upper divertor of EAST was upgraded from graphite to active water-cooling ITER-like tungsten in 2014, exhibiting much enhanced heat removal capability. As for the particle exhaust including both fueling and impurity particles, in addition to wall conditioning and impurity source control, the efficiency of particle flux exhaust is optimized by making full use of the divertor closure and the plasma drifts in both scrape-off layer and divertor volume. These heat and particle exhaust advances contribute greatly to a series of EAST achievements like H-mode operation over 100 s. A brief near-term plan on the integrated control of divertor plasma-wall interactions in long-time scale will also be introduced, aiming to provide favorable divertor operation solution for ITER and CFETR. |
doi_str_mv | 10.1007/s10894-021-00290-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1818378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714496825</galeid><sourcerecordid>A714496825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-9a282aee7f3c96ada8f7c21020dbd83a921367daa8aecae35dea0b50dd6b8dd53</originalsourceid><addsrcrecordid>eNp9kc9rVDEQxx-i4Fr9BzwFPb86Sd6P5LisrRUWWth68BRmk3nblNdkTbKl_e9NfYI3mcPAzOczDHyb5iOHcw4wfskclO5aELwFEBpa_apZ8X4Ure41f92sgA91Lbl827zL-R4AtOr0qik3KR4S5czixL76R0olJnZFWBgGx24wFW9nYpfz6YltYigpzswHdrHe3bKpomv3iMGSY7tC6J7bXcFC7PpICYuP4YUtd8S2mAvjwH4Spvy-eTPhnOnD337W_Li8uN1ctdvrb983621ru0GVVqNQAonGSVo9oEM1jVZwEOD2TknUgsthdIgKySLJ3hHCvgfnhr1yrpdnzaflbszFm2x9IXtnYwhki-GKKzmqCn1eoGOKv06Ui7mPpxTqX0boioASPa_U-UIdcCbjwxRLQlvL0YOvJ2nydb4eedfpoRpVEItgU8w50WSOyT9gejYczEtmZsnM1MzMn8yMrpJcpFzhcKD075f_WL8BIMWY8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918308251</pqid></control><display><type>article</type><title>Progress of Divertor Heat and Particle Flux Control in EAST for Advanced Steady-State Operation in the Last 10 Years</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wang, L. ; Xu, G. S. ; Hu, J. S. ; Li, K. D. ; Yuan, Q. P. ; Liu, J. B. ; Ding, F. ; Yu, Y. W. ; Luo, Z. P. ; Xu, J. C. ; Meng, L. Y. ; Wu, K. ; Zhang, B. ; Chen, M. W. ; Deng, G. Z. ; Liu, X. J. ; Yang, Z. S. ; Liu, X. ; Liu, S. C. ; Ding, R. ; Zuo, G. Z. ; Sun, Z. ; Wu, J. H. ; Cao, B. ; Zhang, Y. ; Duan, Y. M. ; Zhang, L. ; Qian, X. Y. ; Li, A. ; Chen, L. ; Jia, M. N. ; Si, H. ; Xia, T. Y. ; Sun, Y. W. ; Chen, Y. P. ; Li, Q. ; Luo, G. N. ; Yao, D. M. ; Xiao, B. J. ; Gong, X. Z. ; Zhang, X. D. ; Wan, B. N. ; Wang, H. Q. ; Guo, H. Y. ; Eldon, D. ; Garofalo, A. M. ; Liang, Y. ; Xu, S. ; Sang, C. F. ; Wang, D. Z. ; Dai, S. Y. ; Sun, J. Z. ; Ding, H. B. ; Maingi, R. ; Gan, K. F. ; Zou, X. L. ; Du, H. L.</creator><creatorcontrib>Wang, L. ; Xu, G. S. ; Hu, J. S. ; Li, K. D. ; Yuan, Q. P. ; Liu, J. B. ; Ding, F. ; Yu, Y. W. ; Luo, Z. P. ; Xu, J. C. ; Meng, L. Y. ; Wu, K. ; Zhang, B. ; Chen, M. W. ; Deng, G. Z. ; Liu, X. J. ; Yang, Z. S. ; Liu, X. ; Liu, S. C. ; Ding, R. ; Zuo, G. Z. ; Sun, Z. ; Wu, J. H. ; Cao, B. ; Zhang, Y. ; Duan, Y. M. ; Zhang, L. ; Qian, X. Y. ; Li, A. ; Chen, L. ; Jia, M. N. ; Si, H. ; Xia, T. Y. ; Sun, Y. W. ; Chen, Y. P. ; Li, Q. ; Luo, G. N. ; Yao, D. M. ; Xiao, B. J. ; Gong, X. Z. ; Zhang, X. D. ; Wan, B. N. ; Wang, H. Q. ; Guo, H. Y. ; Eldon, D. ; Garofalo, A. M. ; Liang, Y. ; Xu, S. ; Sang, C. F. ; Wang, D. Z. ; Dai, S. Y. ; Sun, J. Z. ; Ding, H. B. ; Maingi, R. ; Gan, K. F. ; Zou, X. L. ; Du, H. L. ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Active control of the excessively high heat and particle fluxes on the divertor target plates is of fundamental importance to the steady state operation of tokamaks, especially for fusion reactors. A series of experiments have been carried out on this critical issue to relieve the plasma-wall interactions in the experimental advanced superconducting tokamak (EAST) in the last ten years, not only contributing to the long pulse operation of EAST itself, but also providing physical understandings and potential techniques to the next-generation devices like ITER. We have characterized the power deposition pattern and broadened the divertor footprint width effectively. The plasma-wetted area is actively handled using either 3-dimentional edge magnetic topology or advanced plasma equilibrium, thereby peak heat flux around the strike point is reduced. Active control of detachment or radiation compatible with core plasma performance has progressed significantly in very recent years, with a series of active feedback control modules developed and utilized successfully, based on the divertor physics advances with both experiments and simulation. The upper divertor of EAST was upgraded from graphite to active water-cooling ITER-like tungsten in 2014, exhibiting much enhanced heat removal capability. As for the particle exhaust including both fueling and impurity particles, in addition to wall conditioning and impurity source control, the efficiency of particle flux exhaust is optimized by making full use of the divertor closure and the plasma drifts in both scrape-off layer and divertor volume. These heat and particle exhaust advances contribute greatly to a series of EAST achievements like H-mode operation over 100 s. A brief near-term plan on the integrated control of divertor plasma-wall interactions in long-time scale will also be introduced, aiming to provide favorable divertor operation solution for ITER and CFETR.</description><identifier>ISSN: 0164-0313</identifier><identifier>EISSN: 1572-9591</identifier><identifier>DOI: 10.1007/s10894-021-00290-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1st China Fusion Energy Conference – Part II ; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Active control ; Cooling ; divertor ; EAST ; Electrons ; Energy Systems ; Feedback control ; Fusion reactors ; Heat flux ; Impurities ; Nuclear Energy ; Nuclear Fusion ; Nuclear power plants ; Original Research ; particle exhaust ; Physics ; Physics and Astronomy ; Plasma ; Plasma equilibrium ; Plasma Physics ; Radiation ; Simulation ; Steady state ; Superconductors ; Sustainable Development ; Tokamak devices ; Tokamaks ; Topology</subject><ispartof>Journal of fusion energy, 2021-06, Vol.40 (1), p.3, Article 3</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-9a282aee7f3c96ada8f7c21020dbd83a921367daa8aecae35dea0b50dd6b8dd53</citedby><cites>FETCH-LOGICAL-c468t-9a282aee7f3c96ada8f7c21020dbd83a921367daa8aecae35dea0b50dd6b8dd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10894-021-00290-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918308251?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1818378$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Xu, G. S.</creatorcontrib><creatorcontrib>Hu, J. S.</creatorcontrib><creatorcontrib>Li, K. D.</creatorcontrib><creatorcontrib>Yuan, Q. P.</creatorcontrib><creatorcontrib>Liu, J. B.</creatorcontrib><creatorcontrib>Ding, F.</creatorcontrib><creatorcontrib>Yu, Y. W.</creatorcontrib><creatorcontrib>Luo, Z. P.</creatorcontrib><creatorcontrib>Xu, J. C.</creatorcontrib><creatorcontrib>Meng, L. Y.</creatorcontrib><creatorcontrib>Wu, K.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Chen, M. W.</creatorcontrib><creatorcontrib>Deng, G. Z.</creatorcontrib><creatorcontrib>Liu, X. J.</creatorcontrib><creatorcontrib>Yang, Z. S.</creatorcontrib><creatorcontrib>Liu, X.</creatorcontrib><creatorcontrib>Liu, S. C.</creatorcontrib><creatorcontrib>Ding, R.</creatorcontrib><creatorcontrib>Zuo, G. Z.</creatorcontrib><creatorcontrib>Sun, Z.</creatorcontrib><creatorcontrib>Wu, J. H.</creatorcontrib><creatorcontrib>Cao, B.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Duan, Y. M.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Qian, X. Y.</creatorcontrib><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Jia, M. N.</creatorcontrib><creatorcontrib>Si, H.</creatorcontrib><creatorcontrib>Xia, T. Y.</creatorcontrib><creatorcontrib>Sun, Y. W.</creatorcontrib><creatorcontrib>Chen, Y. P.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>Luo, G. N.</creatorcontrib><creatorcontrib>Yao, D. M.</creatorcontrib><creatorcontrib>Xiao, B. J.</creatorcontrib><creatorcontrib>Gong, X. Z.</creatorcontrib><creatorcontrib>Zhang, X. D.</creatorcontrib><creatorcontrib>Wan, B. N.</creatorcontrib><creatorcontrib>Wang, H. Q.</creatorcontrib><creatorcontrib>Guo, H. Y.</creatorcontrib><creatorcontrib>Eldon, D.</creatorcontrib><creatorcontrib>Garofalo, A. M.</creatorcontrib><creatorcontrib>Liang, Y.</creatorcontrib><creatorcontrib>Xu, S.</creatorcontrib><creatorcontrib>Sang, C. F.</creatorcontrib><creatorcontrib>Wang, D. Z.</creatorcontrib><creatorcontrib>Dai, S. Y.</creatorcontrib><creatorcontrib>Sun, J. Z.</creatorcontrib><creatorcontrib>Ding, H. B.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Gan, K. F.</creatorcontrib><creatorcontrib>Zou, X. L.</creatorcontrib><creatorcontrib>Du, H. L.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Progress of Divertor Heat and Particle Flux Control in EAST for Advanced Steady-State Operation in the Last 10 Years</title><title>Journal of fusion energy</title><addtitle>J Fusion Energ</addtitle><description>Active control of the excessively high heat and particle fluxes on the divertor target plates is of fundamental importance to the steady state operation of tokamaks, especially for fusion reactors. A series of experiments have been carried out on this critical issue to relieve the plasma-wall interactions in the experimental advanced superconducting tokamak (EAST) in the last ten years, not only contributing to the long pulse operation of EAST itself, but also providing physical understandings and potential techniques to the next-generation devices like ITER. We have characterized the power deposition pattern and broadened the divertor footprint width effectively. The plasma-wetted area is actively handled using either 3-dimentional edge magnetic topology or advanced plasma equilibrium, thereby peak heat flux around the strike point is reduced. Active control of detachment or radiation compatible with core plasma performance has progressed significantly in very recent years, with a series of active feedback control modules developed and utilized successfully, based on the divertor physics advances with both experiments and simulation. The upper divertor of EAST was upgraded from graphite to active water-cooling ITER-like tungsten in 2014, exhibiting much enhanced heat removal capability. As for the particle exhaust including both fueling and impurity particles, in addition to wall conditioning and impurity source control, the efficiency of particle flux exhaust is optimized by making full use of the divertor closure and the plasma drifts in both scrape-off layer and divertor volume. These heat and particle exhaust advances contribute greatly to a series of EAST achievements like H-mode operation over 100 s. A brief near-term plan on the integrated control of divertor plasma-wall interactions in long-time scale will also be introduced, aiming to provide favorable divertor operation solution for ITER and CFETR.</description><subject>1st China Fusion Energy Conference – Part II</subject><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Active control</subject><subject>Cooling</subject><subject>divertor</subject><subject>EAST</subject><subject>Electrons</subject><subject>Energy Systems</subject><subject>Feedback control</subject><subject>Fusion reactors</subject><subject>Heat flux</subject><subject>Impurities</subject><subject>Nuclear Energy</subject><subject>Nuclear Fusion</subject><subject>Nuclear power plants</subject><subject>Original Research</subject><subject>particle exhaust</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma equilibrium</subject><subject>Plasma Physics</subject><subject>Radiation</subject><subject>Simulation</subject><subject>Steady state</subject><subject>Superconductors</subject><subject>Sustainable Development</subject><subject>Tokamak devices</subject><subject>Tokamaks</subject><subject>Topology</subject><issn>0164-0313</issn><issn>1572-9591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc9rVDEQxx-i4Fr9BzwFPb86Sd6P5LisrRUWWth68BRmk3nblNdkTbKl_e9NfYI3mcPAzOczDHyb5iOHcw4wfskclO5aELwFEBpa_apZ8X4Ure41f92sgA91Lbl827zL-R4AtOr0qik3KR4S5czixL76R0olJnZFWBgGx24wFW9nYpfz6YltYigpzswHdrHe3bKpomv3iMGSY7tC6J7bXcFC7PpICYuP4YUtd8S2mAvjwH4Spvy-eTPhnOnD337W_Li8uN1ctdvrb983621ru0GVVqNQAonGSVo9oEM1jVZwEOD2TknUgsthdIgKySLJ3hHCvgfnhr1yrpdnzaflbszFm2x9IXtnYwhki-GKKzmqCn1eoGOKv06Ui7mPpxTqX0boioASPa_U-UIdcCbjwxRLQlvL0YOvJ2nydb4eedfpoRpVEItgU8w50WSOyT9gejYczEtmZsnM1MzMn8yMrpJcpFzhcKD075f_WL8BIMWY8g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Wang, L.</creator><creator>Xu, G. S.</creator><creator>Hu, J. S.</creator><creator>Li, K. D.</creator><creator>Yuan, Q. P.</creator><creator>Liu, J. B.</creator><creator>Ding, F.</creator><creator>Yu, Y. W.</creator><creator>Luo, Z. P.</creator><creator>Xu, J. C.</creator><creator>Meng, L. Y.</creator><creator>Wu, K.</creator><creator>Zhang, B.</creator><creator>Chen, M. W.</creator><creator>Deng, G. Z.</creator><creator>Liu, X. J.</creator><creator>Yang, Z. S.</creator><creator>Liu, X.</creator><creator>Liu, S. C.</creator><creator>Ding, R.</creator><creator>Zuo, G. Z.</creator><creator>Sun, Z.</creator><creator>Wu, J. H.</creator><creator>Cao, B.</creator><creator>Zhang, Y.</creator><creator>Duan, Y. M.</creator><creator>Zhang, L.</creator><creator>Qian, X. Y.</creator><creator>Li, A.</creator><creator>Chen, L.</creator><creator>Jia, M. N.</creator><creator>Si, H.</creator><creator>Xia, T. Y.</creator><creator>Sun, Y. W.</creator><creator>Chen, Y. P.</creator><creator>Li, Q.</creator><creator>Luo, G. N.</creator><creator>Yao, D. M.</creator><creator>Xiao, B. J.</creator><creator>Gong, X. Z.</creator><creator>Zhang, X. D.</creator><creator>Wan, B. N.</creator><creator>Wang, H. Q.</creator><creator>Guo, H. Y.</creator><creator>Eldon, D.</creator><creator>Garofalo, A. M.</creator><creator>Liang, Y.</creator><creator>Xu, S.</creator><creator>Sang, C. F.</creator><creator>Wang, D. Z.</creator><creator>Dai, S. Y.</creator><creator>Sun, J. Z.</creator><creator>Ding, H. B.</creator><creator>Maingi, R.</creator><creator>Gan, K. F.</creator><creator>Zou, X. L.</creator><creator>Du, H. L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20210601</creationdate><title>Progress of Divertor Heat and Particle Flux Control in EAST for Advanced Steady-State Operation in the Last 10 Years</title><author>Wang, L. ; Xu, G. S. ; Hu, J. S. ; Li, K. D. ; Yuan, Q. P. ; Liu, J. B. ; Ding, F. ; Yu, Y. W. ; Luo, Z. P. ; Xu, J. C. ; Meng, L. Y. ; Wu, K. ; Zhang, B. ; Chen, M. W. ; Deng, G. Z. ; Liu, X. J. ; Yang, Z. S. ; Liu, X. ; Liu, S. C. ; Ding, R. ; Zuo, G. Z. ; Sun, Z. ; Wu, J. H. ; Cao, B. ; Zhang, Y. ; Duan, Y. M. ; Zhang, L. ; Qian, X. Y. ; Li, A. ; Chen, L. ; Jia, M. N. ; Si, H. ; Xia, T. Y. ; Sun, Y. W. ; Chen, Y. P. ; Li, Q. ; Luo, G. N. ; Yao, D. M. ; Xiao, B. J. ; Gong, X. Z. ; Zhang, X. D. ; Wan, B. N. ; Wang, H. Q. ; Guo, H. Y. ; Eldon, D. ; Garofalo, A. M. ; Liang, Y. ; Xu, S. ; Sang, C. F. ; Wang, D. Z. ; Dai, S. Y. ; Sun, J. Z. ; Ding, H. B. ; Maingi, R. ; Gan, K. F. ; Zou, X. L. ; Du, H. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-9a282aee7f3c96ada8f7c21020dbd83a921367daa8aecae35dea0b50dd6b8dd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1st China Fusion Energy Conference – Part II</topic><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Active control</topic><topic>Cooling</topic><topic>divertor</topic><topic>EAST</topic><topic>Electrons</topic><topic>Energy Systems</topic><topic>Feedback control</topic><topic>Fusion reactors</topic><topic>Heat flux</topic><topic>Impurities</topic><topic>Nuclear Energy</topic><topic>Nuclear Fusion</topic><topic>Nuclear power plants</topic><topic>Original Research</topic><topic>particle exhaust</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma equilibrium</topic><topic>Plasma Physics</topic><topic>Radiation</topic><topic>Simulation</topic><topic>Steady state</topic><topic>Superconductors</topic><topic>Sustainable Development</topic><topic>Tokamak devices</topic><topic>Tokamaks</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Xu, G. S.</creatorcontrib><creatorcontrib>Hu, J. S.</creatorcontrib><creatorcontrib>Li, K. D.</creatorcontrib><creatorcontrib>Yuan, Q. P.</creatorcontrib><creatorcontrib>Liu, J. B.</creatorcontrib><creatorcontrib>Ding, F.</creatorcontrib><creatorcontrib>Yu, Y. W.</creatorcontrib><creatorcontrib>Luo, Z. P.</creatorcontrib><creatorcontrib>Xu, J. C.</creatorcontrib><creatorcontrib>Meng, L. Y.</creatorcontrib><creatorcontrib>Wu, K.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Chen, M. W.</creatorcontrib><creatorcontrib>Deng, G. Z.</creatorcontrib><creatorcontrib>Liu, X. J.</creatorcontrib><creatorcontrib>Yang, Z. S.</creatorcontrib><creatorcontrib>Liu, X.</creatorcontrib><creatorcontrib>Liu, S. C.</creatorcontrib><creatorcontrib>Ding, R.</creatorcontrib><creatorcontrib>Zuo, G. Z.</creatorcontrib><creatorcontrib>Sun, Z.</creatorcontrib><creatorcontrib>Wu, J. H.</creatorcontrib><creatorcontrib>Cao, B.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Duan, Y. M.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Qian, X. Y.</creatorcontrib><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Jia, M. N.</creatorcontrib><creatorcontrib>Si, H.</creatorcontrib><creatorcontrib>Xia, T. Y.</creatorcontrib><creatorcontrib>Sun, Y. W.</creatorcontrib><creatorcontrib>Chen, Y. P.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>Luo, G. N.</creatorcontrib><creatorcontrib>Yao, D. M.</creatorcontrib><creatorcontrib>Xiao, B. J.</creatorcontrib><creatorcontrib>Gong, X. Z.</creatorcontrib><creatorcontrib>Zhang, X. D.</creatorcontrib><creatorcontrib>Wan, B. N.</creatorcontrib><creatorcontrib>Wang, H. Q.</creatorcontrib><creatorcontrib>Guo, H. Y.</creatorcontrib><creatorcontrib>Eldon, D.</creatorcontrib><creatorcontrib>Garofalo, A. M.</creatorcontrib><creatorcontrib>Liang, Y.</creatorcontrib><creatorcontrib>Xu, S.</creatorcontrib><creatorcontrib>Sang, C. F.</creatorcontrib><creatorcontrib>Wang, D. Z.</creatorcontrib><creatorcontrib>Dai, S. Y.</creatorcontrib><creatorcontrib>Sun, J. Z.</creatorcontrib><creatorcontrib>Ding, H. B.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Gan, K. F.</creatorcontrib><creatorcontrib>Zou, X. L.</creatorcontrib><creatorcontrib>Du, H. L.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of fusion energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, L.</au><au>Xu, G. S.</au><au>Hu, J. S.</au><au>Li, K. D.</au><au>Yuan, Q. P.</au><au>Liu, J. B.</au><au>Ding, F.</au><au>Yu, Y. W.</au><au>Luo, Z. P.</au><au>Xu, J. C.</au><au>Meng, L. Y.</au><au>Wu, K.</au><au>Zhang, B.</au><au>Chen, M. W.</au><au>Deng, G. Z.</au><au>Liu, X. J.</au><au>Yang, Z. S.</au><au>Liu, X.</au><au>Liu, S. C.</au><au>Ding, R.</au><au>Zuo, G. Z.</au><au>Sun, Z.</au><au>Wu, J. H.</au><au>Cao, B.</au><au>Zhang, Y.</au><au>Duan, Y. M.</au><au>Zhang, L.</au><au>Qian, X. Y.</au><au>Li, A.</au><au>Chen, L.</au><au>Jia, M. N.</au><au>Si, H.</au><au>Xia, T. Y.</au><au>Sun, Y. W.</au><au>Chen, Y. P.</au><au>Li, Q.</au><au>Luo, G. N.</au><au>Yao, D. M.</au><au>Xiao, B. J.</au><au>Gong, X. Z.</au><au>Zhang, X. D.</au><au>Wan, B. N.</au><au>Wang, H. Q.</au><au>Guo, H. Y.</au><au>Eldon, D.</au><au>Garofalo, A. M.</au><au>Liang, Y.</au><au>Xu, S.</au><au>Sang, C. F.</au><au>Wang, D. Z.</au><au>Dai, S. Y.</au><au>Sun, J. Z.</au><au>Ding, H. B.</au><au>Maingi, R.</au><au>Gan, K. F.</au><au>Zou, X. L.</au><au>Du, H. L.</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress of Divertor Heat and Particle Flux Control in EAST for Advanced Steady-State Operation in the Last 10 Years</atitle><jtitle>Journal of fusion energy</jtitle><stitle>J Fusion Energ</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>40</volume><issue>1</issue><spage>3</spage><pages>3-</pages><artnum>3</artnum><issn>0164-0313</issn><eissn>1572-9591</eissn><abstract>Active control of the excessively high heat and particle fluxes on the divertor target plates is of fundamental importance to the steady state operation of tokamaks, especially for fusion reactors. A series of experiments have been carried out on this critical issue to relieve the plasma-wall interactions in the experimental advanced superconducting tokamak (EAST) in the last ten years, not only contributing to the long pulse operation of EAST itself, but also providing physical understandings and potential techniques to the next-generation devices like ITER. We have characterized the power deposition pattern and broadened the divertor footprint width effectively. The plasma-wetted area is actively handled using either 3-dimentional edge magnetic topology or advanced plasma equilibrium, thereby peak heat flux around the strike point is reduced. Active control of detachment or radiation compatible with core plasma performance has progressed significantly in very recent years, with a series of active feedback control modules developed and utilized successfully, based on the divertor physics advances with both experiments and simulation. The upper divertor of EAST was upgraded from graphite to active water-cooling ITER-like tungsten in 2014, exhibiting much enhanced heat removal capability. As for the particle exhaust including both fueling and impurity particles, in addition to wall conditioning and impurity source control, the efficiency of particle flux exhaust is optimized by making full use of the divertor closure and the plasma drifts in both scrape-off layer and divertor volume. These heat and particle exhaust advances contribute greatly to a series of EAST achievements like H-mode operation over 100 s. A brief near-term plan on the integrated control of divertor plasma-wall interactions in long-time scale will also be introduced, aiming to provide favorable divertor operation solution for ITER and CFETR.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10894-021-00290-9</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0164-0313 |
ispartof | Journal of fusion energy, 2021-06, Vol.40 (1), p.3, Article 3 |
issn | 0164-0313 1572-9591 |
language | eng |
recordid | cdi_osti_scitechconnect_1818378 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | 1st China Fusion Energy Conference – Part II 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Active control Cooling divertor EAST Electrons Energy Systems Feedback control Fusion reactors Heat flux Impurities Nuclear Energy Nuclear Fusion Nuclear power plants Original Research particle exhaust Physics Physics and Astronomy Plasma Plasma equilibrium Plasma Physics Radiation Simulation Steady state Superconductors Sustainable Development Tokamak devices Tokamaks Topology |
title | Progress of Divertor Heat and Particle Flux Control in EAST for Advanced Steady-State Operation in the Last 10 Years |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20of%20Divertor%20Heat%20and%20Particle%20Flux%20Control%20in%20EAST%20for%20Advanced%20Steady-State%20Operation%20in%20the%20Last%2010%20Years&rft.jtitle=Journal%20of%20fusion%20energy&rft.au=Wang,%20L.&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2021-06-01&rft.volume=40&rft.issue=1&rft.spage=3&rft.pages=3-&rft.artnum=3&rft.issn=0164-0313&rft.eissn=1572-9591&rft_id=info:doi/10.1007/s10894-021-00290-9&rft_dat=%3Cgale_osti_%3EA714496825%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918308251&rft_id=info:pmid/&rft_galeid=A714496825&rfr_iscdi=true |