Strain fields in twisted bilayer graphene
Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introdu...
Gespeichert in:
Veröffentlicht in: | Nature materials 2021-07, Vol.20 (7), p.956-963 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 963 |
---|---|
container_issue | 7 |
container_start_page | 956 |
container_title | Nature materials |
container_volume | 20 |
creator | Kazmierczak, Nathanael P. Van Winkle, Madeline Ophus, Colin Bustillo, Karen C. Carr, Stephen Brown, Hamish G. Ciston, Jim Taniguchi, Takashi Watanabe, Kenji Bediako, D. Kwabena |
description | Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introduce disorder and strain. In this study we used Bragg interferometry to capture atomic displacement fields in twisted bilayer graphene with twist angles |
doi_str_mv | 10.1038/s41563-021-00973-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1818271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546399048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7323cafbd8ceb97a898316045ff102f36efa28ef50f9038da9200e51205fd1a13</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRrFb_gAcJetFDdD-T3aMUv6DgQT0vm81sm5ImdTeh9N-7NVXBg6cZmGfeYR6Ezgi-IZjJ28CJyFiKKUkxVjlL13voiPA8S3mW4f1dTwilI3QcwgJHUojsEI0Yk0IxyY7Q9WvnTdUkroK6DEnsunUVOiiToqrNBnwy82Y1hwZO0IEzdYDTXR2j94f7t8lTOn15fJ7cTVPLMe3SnFFmjStKaaFQuZFKMpJhLpwjmDqWgTNUghPYqfhEaRTFGAShWLiSGMLG6GLIbUNX6WCrDuzctk0DttNEEknzLXQ1QCvffvQQOr2sgoW6Ng20fdBUEC6UzFke0cs_6KLtfRNfiBTPmFKYy0jRgbK-DcGD0ytfLY3faIL11rYebOvoUH_Z1uu4dL6L7osllD8r33ojwAYgxFEzA_97-5_YT7h0iCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546399048</pqid></control><display><type>article</type><title>Strain fields in twisted bilayer graphene</title><source>SpringerLink Journals</source><source>Nature</source><creator>Kazmierczak, Nathanael P. ; Van Winkle, Madeline ; Ophus, Colin ; Bustillo, Karen C. ; Carr, Stephen ; Brown, Hamish G. ; Ciston, Jim ; Taniguchi, Takashi ; Watanabe, Kenji ; Bediako, D. Kwabena</creator><creatorcontrib>Kazmierczak, Nathanael P. ; Van Winkle, Madeline ; Ophus, Colin ; Bustillo, Karen C. ; Carr, Stephen ; Brown, Hamish G. ; Ciston, Jim ; Taniguchi, Takashi ; Watanabe, Kenji ; Bediako, D. Kwabena ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introduce disorder and strain. In this study we used Bragg interferometry to capture atomic displacement fields in twisted bilayer graphene with twist angles <2°. Nanoscale spatial fluctuations in twist angle and uniaxial heterostrain were statistically evaluated, revealing the prevalence of short-range disorder in moiré heterostructures. By quantitatively mapping strain tensor fields, we uncovered two regimes of structural relaxation and disentangled the electronic contributions of constituent rotation modes. Further, we found that applied heterostrain accumulates anisotropically in saddle-point regions, generating distinctive striped strain phases. Our results establish the reconstruction mechanics underpinning the twist-angle-dependent electronic behaviour of twisted bilayer graphene and provide a framework for directly visualizing structural relaxation, disorder and strain in moiré materials.
Complete strain tensor fields of twisted bilayer graphene are quantitatively mapped, revealing two-regime reconstruction mechanics depending on twist angle.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-00973-w</identifier><identifier>PMID: 33859383</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/357/918/1053 ; 639/301/930/328/2082 ; 639/766/119/995 ; 639/925/357/1018 ; 639/925/918/1052 ; Bilayers ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; electronic properties and devices ; electronic properties and materials ; Graphene ; Heterostructures ; Interferometry ; Lattice vibration ; MATERIALS SCIENCE ; Mathematical analysis ; mechanical and structural properties and devices ; Mechanics (physics) ; Nanotechnology ; Optical and Electronic Materials ; Reconstruction ; Saddle points ; Strain ; Superlattices ; Tensors ; transmission electron microscopy ; two dimensional materials</subject><ispartof>Nature materials, 2021-07, Vol.20 (7), p.956-963</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7323cafbd8ceb97a898316045ff102f36efa28ef50f9038da9200e51205fd1a13</citedby><cites>FETCH-LOGICAL-c402t-7323cafbd8ceb97a898316045ff102f36efa28ef50f9038da9200e51205fd1a13</cites><orcidid>0000-0003-3701-8119 ; 0000-0002-2096-6078 ; 0000-0003-2348-8558 ; 0000-0001-5772-2723 ; 0000-0002-7822-6769 ; 0000-0002-2749-8625 ; 0000-0002-1467-3105 ; 0000-0003-0064-9814 ; 0000000300649814 ; 0000000337018119 ; 0000000220966078 ; 0000000323488558 ; 0000000227498625 ; 0000000157722723 ; 0000000278226769 ; 0000000214673105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-00973-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-00973-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33859383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1818271$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kazmierczak, Nathanael P.</creatorcontrib><creatorcontrib>Van Winkle, Madeline</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Bustillo, Karen C.</creatorcontrib><creatorcontrib>Carr, Stephen</creatorcontrib><creatorcontrib>Brown, Hamish G.</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Bediako, D. Kwabena</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Strain fields in twisted bilayer graphene</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introduce disorder and strain. In this study we used Bragg interferometry to capture atomic displacement fields in twisted bilayer graphene with twist angles <2°. Nanoscale spatial fluctuations in twist angle and uniaxial heterostrain were statistically evaluated, revealing the prevalence of short-range disorder in moiré heterostructures. By quantitatively mapping strain tensor fields, we uncovered two regimes of structural relaxation and disentangled the electronic contributions of constituent rotation modes. Further, we found that applied heterostrain accumulates anisotropically in saddle-point regions, generating distinctive striped strain phases. Our results establish the reconstruction mechanics underpinning the twist-angle-dependent electronic behaviour of twisted bilayer graphene and provide a framework for directly visualizing structural relaxation, disorder and strain in moiré materials.
Complete strain tensor fields of twisted bilayer graphene are quantitatively mapped, revealing two-regime reconstruction mechanics depending on twist angle.</description><subject>119/118</subject><subject>639/301/357/918/1053</subject><subject>639/301/930/328/2082</subject><subject>639/766/119/995</subject><subject>639/925/357/1018</subject><subject>639/925/918/1052</subject><subject>Bilayers</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>electronic properties and devices</subject><subject>electronic properties and materials</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Interferometry</subject><subject>Lattice vibration</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>mechanical and structural properties and devices</subject><subject>Mechanics (physics)</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Reconstruction</subject><subject>Saddle points</subject><subject>Strain</subject><subject>Superlattices</subject><subject>Tensors</subject><subject>transmission electron microscopy</subject><subject>two dimensional materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AQhhdRrFb_gAcJetFDdD-T3aMUv6DgQT0vm81sm5ImdTeh9N-7NVXBg6cZmGfeYR6Ezgi-IZjJ28CJyFiKKUkxVjlL13voiPA8S3mW4f1dTwilI3QcwgJHUojsEI0Yk0IxyY7Q9WvnTdUkroK6DEnsunUVOiiToqrNBnwy82Y1hwZO0IEzdYDTXR2j94f7t8lTOn15fJ7cTVPLMe3SnFFmjStKaaFQuZFKMpJhLpwjmDqWgTNUghPYqfhEaRTFGAShWLiSGMLG6GLIbUNX6WCrDuzctk0DttNEEknzLXQ1QCvffvQQOr2sgoW6Ng20fdBUEC6UzFke0cs_6KLtfRNfiBTPmFKYy0jRgbK-DcGD0ytfLY3faIL11rYebOvoUH_Z1uu4dL6L7osllD8r33ojwAYgxFEzA_97-5_YT7h0iCs</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kazmierczak, Nathanael P.</creator><creator>Van Winkle, Madeline</creator><creator>Ophus, Colin</creator><creator>Bustillo, Karen C.</creator><creator>Carr, Stephen</creator><creator>Brown, Hamish G.</creator><creator>Ciston, Jim</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Bediako, D. Kwabena</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2096-6078</orcidid><orcidid>https://orcid.org/0000-0003-2348-8558</orcidid><orcidid>https://orcid.org/0000-0001-5772-2723</orcidid><orcidid>https://orcid.org/0000-0002-7822-6769</orcidid><orcidid>https://orcid.org/0000-0002-2749-8625</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-0064-9814</orcidid><orcidid>https://orcid.org/0000000300649814</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000220966078</orcidid><orcidid>https://orcid.org/0000000323488558</orcidid><orcidid>https://orcid.org/0000000227498625</orcidid><orcidid>https://orcid.org/0000000157722723</orcidid><orcidid>https://orcid.org/0000000278226769</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid></search><sort><creationdate>20210701</creationdate><title>Strain fields in twisted bilayer graphene</title><author>Kazmierczak, Nathanael P. ; Van Winkle, Madeline ; Ophus, Colin ; Bustillo, Karen C. ; Carr, Stephen ; Brown, Hamish G. ; Ciston, Jim ; Taniguchi, Takashi ; Watanabe, Kenji ; Bediako, D. Kwabena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7323cafbd8ceb97a898316045ff102f36efa28ef50f9038da9200e51205fd1a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>119/118</topic><topic>639/301/357/918/1053</topic><topic>639/301/930/328/2082</topic><topic>639/766/119/995</topic><topic>639/925/357/1018</topic><topic>639/925/918/1052</topic><topic>Bilayers</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>electronic properties and devices</topic><topic>electronic properties and materials</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Interferometry</topic><topic>Lattice vibration</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>mechanical and structural properties and devices</topic><topic>Mechanics (physics)</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Reconstruction</topic><topic>Saddle points</topic><topic>Strain</topic><topic>Superlattices</topic><topic>Tensors</topic><topic>transmission electron microscopy</topic><topic>two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazmierczak, Nathanael P.</creatorcontrib><creatorcontrib>Van Winkle, Madeline</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Bustillo, Karen C.</creatorcontrib><creatorcontrib>Carr, Stephen</creatorcontrib><creatorcontrib>Brown, Hamish G.</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Bediako, D. Kwabena</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazmierczak, Nathanael P.</au><au>Van Winkle, Madeline</au><au>Ophus, Colin</au><au>Bustillo, Karen C.</au><au>Carr, Stephen</au><au>Brown, Hamish G.</au><au>Ciston, Jim</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Bediako, D. Kwabena</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain fields in twisted bilayer graphene</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>20</volume><issue>7</issue><spage>956</spage><epage>963</epage><pages>956-963</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introduce disorder and strain. In this study we used Bragg interferometry to capture atomic displacement fields in twisted bilayer graphene with twist angles <2°. Nanoscale spatial fluctuations in twist angle and uniaxial heterostrain were statistically evaluated, revealing the prevalence of short-range disorder in moiré heterostructures. By quantitatively mapping strain tensor fields, we uncovered two regimes of structural relaxation and disentangled the electronic contributions of constituent rotation modes. Further, we found that applied heterostrain accumulates anisotropically in saddle-point regions, generating distinctive striped strain phases. Our results establish the reconstruction mechanics underpinning the twist-angle-dependent electronic behaviour of twisted bilayer graphene and provide a framework for directly visualizing structural relaxation, disorder and strain in moiré materials.
Complete strain tensor fields of twisted bilayer graphene are quantitatively mapped, revealing two-regime reconstruction mechanics depending on twist angle.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33859383</pmid><doi>10.1038/s41563-021-00973-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2096-6078</orcidid><orcidid>https://orcid.org/0000-0003-2348-8558</orcidid><orcidid>https://orcid.org/0000-0001-5772-2723</orcidid><orcidid>https://orcid.org/0000-0002-7822-6769</orcidid><orcidid>https://orcid.org/0000-0002-2749-8625</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-0064-9814</orcidid><orcidid>https://orcid.org/0000000300649814</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000220966078</orcidid><orcidid>https://orcid.org/0000000323488558</orcidid><orcidid>https://orcid.org/0000000227498625</orcidid><orcidid>https://orcid.org/0000000157722723</orcidid><orcidid>https://orcid.org/0000000278226769</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2021-07, Vol.20 (7), p.956-963 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1818271 |
source | SpringerLink Journals; Nature |
subjects | 119/118 639/301/357/918/1053 639/301/930/328/2082 639/766/119/995 639/925/357/1018 639/925/918/1052 Bilayers Biomaterials Chemistry and Materials Science Condensed Matter Physics electronic properties and devices electronic properties and materials Graphene Heterostructures Interferometry Lattice vibration MATERIALS SCIENCE Mathematical analysis mechanical and structural properties and devices Mechanics (physics) Nanotechnology Optical and Electronic Materials Reconstruction Saddle points Strain Superlattices Tensors transmission electron microscopy two dimensional materials |
title | Strain fields in twisted bilayer graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20fields%20in%20twisted%20bilayer%20graphene&rft.jtitle=Nature%20materials&rft.au=Kazmierczak,%20Nathanael%20P.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-07-01&rft.volume=20&rft.issue=7&rft.spage=956&rft.epage=963&rft.pages=956-963&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-00973-w&rft_dat=%3Cproquest_osti_%3E2546399048%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546399048&rft_id=info:pmid/33859383&rfr_iscdi=true |