Strain fields in twisted bilayer graphene

Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introdu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2021-07, Vol.20 (7), p.956-963
Hauptverfasser: Kazmierczak, Nathanael P., Van Winkle, Madeline, Ophus, Colin, Bustillo, Karen C., Carr, Stephen, Brown, Hamish G., Ciston, Jim, Taniguchi, Takashi, Watanabe, Kenji, Bediako, D. Kwabena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 963
container_issue 7
container_start_page 956
container_title Nature materials
container_volume 20
creator Kazmierczak, Nathanael P.
Van Winkle, Madeline
Ophus, Colin
Bustillo, Karen C.
Carr, Stephen
Brown, Hamish G.
Ciston, Jim
Taniguchi, Takashi
Watanabe, Kenji
Bediako, D. Kwabena
description Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introduce disorder and strain. In this study we used Bragg interferometry to capture atomic displacement fields in twisted bilayer graphene with twist angles
doi_str_mv 10.1038/s41563-021-00973-w
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1818271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546399048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7323cafbd8ceb97a898316045ff102f36efa28ef50f9038da9200e51205fd1a13</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRrFb_gAcJetFDdD-T3aMUv6DgQT0vm81sm5ImdTeh9N-7NVXBg6cZmGfeYR6Ezgi-IZjJ28CJyFiKKUkxVjlL13voiPA8S3mW4f1dTwilI3QcwgJHUojsEI0Yk0IxyY7Q9WvnTdUkroK6DEnsunUVOiiToqrNBnwy82Y1hwZO0IEzdYDTXR2j94f7t8lTOn15fJ7cTVPLMe3SnFFmjStKaaFQuZFKMpJhLpwjmDqWgTNUghPYqfhEaRTFGAShWLiSGMLG6GLIbUNX6WCrDuzctk0DttNEEknzLXQ1QCvffvQQOr2sgoW6Ng20fdBUEC6UzFke0cs_6KLtfRNfiBTPmFKYy0jRgbK-DcGD0ytfLY3faIL11rYebOvoUH_Z1uu4dL6L7osllD8r33ojwAYgxFEzA_97-5_YT7h0iCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546399048</pqid></control><display><type>article</type><title>Strain fields in twisted bilayer graphene</title><source>SpringerLink Journals</source><source>Nature</source><creator>Kazmierczak, Nathanael P. ; Van Winkle, Madeline ; Ophus, Colin ; Bustillo, Karen C. ; Carr, Stephen ; Brown, Hamish G. ; Ciston, Jim ; Taniguchi, Takashi ; Watanabe, Kenji ; Bediako, D. Kwabena</creator><creatorcontrib>Kazmierczak, Nathanael P. ; Van Winkle, Madeline ; Ophus, Colin ; Bustillo, Karen C. ; Carr, Stephen ; Brown, Hamish G. ; Ciston, Jim ; Taniguchi, Takashi ; Watanabe, Kenji ; Bediako, D. Kwabena ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introduce disorder and strain. In this study we used Bragg interferometry to capture atomic displacement fields in twisted bilayer graphene with twist angles &lt;2°. Nanoscale spatial fluctuations in twist angle and uniaxial heterostrain were statistically evaluated, revealing the prevalence of short-range disorder in moiré heterostructures. By quantitatively mapping strain tensor fields, we uncovered two regimes of structural relaxation and disentangled the electronic contributions of constituent rotation modes. Further, we found that applied heterostrain accumulates anisotropically in saddle-point regions, generating distinctive striped strain phases. Our results establish the reconstruction mechanics underpinning the twist-angle-dependent electronic behaviour of twisted bilayer graphene and provide a framework for directly visualizing structural relaxation, disorder and strain in moiré materials. Complete strain tensor fields of twisted bilayer graphene are quantitatively mapped, revealing two-regime reconstruction mechanics depending on twist angle.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-00973-w</identifier><identifier>PMID: 33859383</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/357/918/1053 ; 639/301/930/328/2082 ; 639/766/119/995 ; 639/925/357/1018 ; 639/925/918/1052 ; Bilayers ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; electronic properties and devices ; electronic properties and materials ; Graphene ; Heterostructures ; Interferometry ; Lattice vibration ; MATERIALS SCIENCE ; Mathematical analysis ; mechanical and structural properties and devices ; Mechanics (physics) ; Nanotechnology ; Optical and Electronic Materials ; Reconstruction ; Saddle points ; Strain ; Superlattices ; Tensors ; transmission electron microscopy ; two dimensional materials</subject><ispartof>Nature materials, 2021-07, Vol.20 (7), p.956-963</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7323cafbd8ceb97a898316045ff102f36efa28ef50f9038da9200e51205fd1a13</citedby><cites>FETCH-LOGICAL-c402t-7323cafbd8ceb97a898316045ff102f36efa28ef50f9038da9200e51205fd1a13</cites><orcidid>0000-0003-3701-8119 ; 0000-0002-2096-6078 ; 0000-0003-2348-8558 ; 0000-0001-5772-2723 ; 0000-0002-7822-6769 ; 0000-0002-2749-8625 ; 0000-0002-1467-3105 ; 0000-0003-0064-9814 ; 0000000300649814 ; 0000000337018119 ; 0000000220966078 ; 0000000323488558 ; 0000000227498625 ; 0000000157722723 ; 0000000278226769 ; 0000000214673105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-00973-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-00973-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33859383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1818271$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kazmierczak, Nathanael P.</creatorcontrib><creatorcontrib>Van Winkle, Madeline</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Bustillo, Karen C.</creatorcontrib><creatorcontrib>Carr, Stephen</creatorcontrib><creatorcontrib>Brown, Hamish G.</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Bediako, D. Kwabena</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Strain fields in twisted bilayer graphene</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introduce disorder and strain. In this study we used Bragg interferometry to capture atomic displacement fields in twisted bilayer graphene with twist angles &lt;2°. Nanoscale spatial fluctuations in twist angle and uniaxial heterostrain were statistically evaluated, revealing the prevalence of short-range disorder in moiré heterostructures. By quantitatively mapping strain tensor fields, we uncovered two regimes of structural relaxation and disentangled the electronic contributions of constituent rotation modes. Further, we found that applied heterostrain accumulates anisotropically in saddle-point regions, generating distinctive striped strain phases. Our results establish the reconstruction mechanics underpinning the twist-angle-dependent electronic behaviour of twisted bilayer graphene and provide a framework for directly visualizing structural relaxation, disorder and strain in moiré materials. Complete strain tensor fields of twisted bilayer graphene are quantitatively mapped, revealing two-regime reconstruction mechanics depending on twist angle.</description><subject>119/118</subject><subject>639/301/357/918/1053</subject><subject>639/301/930/328/2082</subject><subject>639/766/119/995</subject><subject>639/925/357/1018</subject><subject>639/925/918/1052</subject><subject>Bilayers</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>electronic properties and devices</subject><subject>electronic properties and materials</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Interferometry</subject><subject>Lattice vibration</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>mechanical and structural properties and devices</subject><subject>Mechanics (physics)</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Reconstruction</subject><subject>Saddle points</subject><subject>Strain</subject><subject>Superlattices</subject><subject>Tensors</subject><subject>transmission electron microscopy</subject><subject>two dimensional materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AQhhdRrFb_gAcJetFDdD-T3aMUv6DgQT0vm81sm5ImdTeh9N-7NVXBg6cZmGfeYR6Ezgi-IZjJ28CJyFiKKUkxVjlL13voiPA8S3mW4f1dTwilI3QcwgJHUojsEI0Yk0IxyY7Q9WvnTdUkroK6DEnsunUVOiiToqrNBnwy82Y1hwZO0IEzdYDTXR2j94f7t8lTOn15fJ7cTVPLMe3SnFFmjStKaaFQuZFKMpJhLpwjmDqWgTNUghPYqfhEaRTFGAShWLiSGMLG6GLIbUNX6WCrDuzctk0DttNEEknzLXQ1QCvffvQQOr2sgoW6Ng20fdBUEC6UzFke0cs_6KLtfRNfiBTPmFKYy0jRgbK-DcGD0ytfLY3faIL11rYebOvoUH_Z1uu4dL6L7osllD8r33ojwAYgxFEzA_97-5_YT7h0iCs</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kazmierczak, Nathanael P.</creator><creator>Van Winkle, Madeline</creator><creator>Ophus, Colin</creator><creator>Bustillo, Karen C.</creator><creator>Carr, Stephen</creator><creator>Brown, Hamish G.</creator><creator>Ciston, Jim</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Bediako, D. Kwabena</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2096-6078</orcidid><orcidid>https://orcid.org/0000-0003-2348-8558</orcidid><orcidid>https://orcid.org/0000-0001-5772-2723</orcidid><orcidid>https://orcid.org/0000-0002-7822-6769</orcidid><orcidid>https://orcid.org/0000-0002-2749-8625</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-0064-9814</orcidid><orcidid>https://orcid.org/0000000300649814</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000220966078</orcidid><orcidid>https://orcid.org/0000000323488558</orcidid><orcidid>https://orcid.org/0000000227498625</orcidid><orcidid>https://orcid.org/0000000157722723</orcidid><orcidid>https://orcid.org/0000000278226769</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid></search><sort><creationdate>20210701</creationdate><title>Strain fields in twisted bilayer graphene</title><author>Kazmierczak, Nathanael P. ; Van Winkle, Madeline ; Ophus, Colin ; Bustillo, Karen C. ; Carr, Stephen ; Brown, Hamish G. ; Ciston, Jim ; Taniguchi, Takashi ; Watanabe, Kenji ; Bediako, D. Kwabena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7323cafbd8ceb97a898316045ff102f36efa28ef50f9038da9200e51205fd1a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>119/118</topic><topic>639/301/357/918/1053</topic><topic>639/301/930/328/2082</topic><topic>639/766/119/995</topic><topic>639/925/357/1018</topic><topic>639/925/918/1052</topic><topic>Bilayers</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>electronic properties and devices</topic><topic>electronic properties and materials</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Interferometry</topic><topic>Lattice vibration</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>mechanical and structural properties and devices</topic><topic>Mechanics (physics)</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Reconstruction</topic><topic>Saddle points</topic><topic>Strain</topic><topic>Superlattices</topic><topic>Tensors</topic><topic>transmission electron microscopy</topic><topic>two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazmierczak, Nathanael P.</creatorcontrib><creatorcontrib>Van Winkle, Madeline</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Bustillo, Karen C.</creatorcontrib><creatorcontrib>Carr, Stephen</creatorcontrib><creatorcontrib>Brown, Hamish G.</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Bediako, D. Kwabena</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazmierczak, Nathanael P.</au><au>Van Winkle, Madeline</au><au>Ophus, Colin</au><au>Bustillo, Karen C.</au><au>Carr, Stephen</au><au>Brown, Hamish G.</au><au>Ciston, Jim</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Bediako, D. Kwabena</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain fields in twisted bilayer graphene</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>20</volume><issue>7</issue><spage>956</spage><epage>963</epage><pages>956-963</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introduce disorder and strain. In this study we used Bragg interferometry to capture atomic displacement fields in twisted bilayer graphene with twist angles &lt;2°. Nanoscale spatial fluctuations in twist angle and uniaxial heterostrain were statistically evaluated, revealing the prevalence of short-range disorder in moiré heterostructures. By quantitatively mapping strain tensor fields, we uncovered two regimes of structural relaxation and disentangled the electronic contributions of constituent rotation modes. Further, we found that applied heterostrain accumulates anisotropically in saddle-point regions, generating distinctive striped strain phases. Our results establish the reconstruction mechanics underpinning the twist-angle-dependent electronic behaviour of twisted bilayer graphene and provide a framework for directly visualizing structural relaxation, disorder and strain in moiré materials. Complete strain tensor fields of twisted bilayer graphene are quantitatively mapped, revealing two-regime reconstruction mechanics depending on twist angle.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33859383</pmid><doi>10.1038/s41563-021-00973-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2096-6078</orcidid><orcidid>https://orcid.org/0000-0003-2348-8558</orcidid><orcidid>https://orcid.org/0000-0001-5772-2723</orcidid><orcidid>https://orcid.org/0000-0002-7822-6769</orcidid><orcidid>https://orcid.org/0000-0002-2749-8625</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-0064-9814</orcidid><orcidid>https://orcid.org/0000000300649814</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000220966078</orcidid><orcidid>https://orcid.org/0000000323488558</orcidid><orcidid>https://orcid.org/0000000227498625</orcidid><orcidid>https://orcid.org/0000000157722723</orcidid><orcidid>https://orcid.org/0000000278226769</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2021-07, Vol.20 (7), p.956-963
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1818271
source SpringerLink Journals; Nature
subjects 119/118
639/301/357/918/1053
639/301/930/328/2082
639/766/119/995
639/925/357/1018
639/925/918/1052
Bilayers
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
electronic properties and devices
electronic properties and materials
Graphene
Heterostructures
Interferometry
Lattice vibration
MATERIALS SCIENCE
Mathematical analysis
mechanical and structural properties and devices
Mechanics (physics)
Nanotechnology
Optical and Electronic Materials
Reconstruction
Saddle points
Strain
Superlattices
Tensors
transmission electron microscopy
two dimensional materials
title Strain fields in twisted bilayer graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20fields%20in%20twisted%20bilayer%20graphene&rft.jtitle=Nature%20materials&rft.au=Kazmierczak,%20Nathanael%20P.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-07-01&rft.volume=20&rft.issue=7&rft.spage=956&rft.epage=963&rft.pages=956-963&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-00973-w&rft_dat=%3Cproquest_osti_%3E2546399048%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546399048&rft_id=info:pmid/33859383&rfr_iscdi=true