Effect of nozzle curvature on supersonic gas jets used in laser–plasma acceleration

Supersonic gas jets produced by converging–diverging nozzles are commonly used as targets for laser–plasma acceleration (LPA) experiments. A major point of interest for these targets is the gas density at the region of interaction where the laser ionizes the gas plume to create a plasma, providing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2021-09, Vol.28 (9)
Hauptverfasser: Zhou, Ocean, Tsai, Hai-En, Ostermayr, Tobias M., Fan-Chiang, Liona, van Tilborg, Jeroen, Schroeder, Carl B., Esarey, Eric, Geddes, Cameron G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of plasmas
container_volume 28
creator Zhou, Ocean
Tsai, Hai-En
Ostermayr, Tobias M.
Fan-Chiang, Liona
van Tilborg, Jeroen
Schroeder, Carl B.
Esarey, Eric
Geddes, Cameron G. R.
description Supersonic gas jets produced by converging–diverging nozzles are commonly used as targets for laser–plasma acceleration (LPA) experiments. A major point of interest for these targets is the gas density at the region of interaction where the laser ionizes the gas plume to create a plasma, providing the acceleration structure. Tuning the density profiles at this interaction region is crucial to LPA optimization. A “flat-top” density profile is desired at the line of interaction to control laser propagation and high-energy electron acceleration, while a short high-density profile is often preferred for acceleration of lower-energy tightly focused laser–plasma interactions. A particular design parameter of interest is the curvature of the nozzle's diverging section. We examine three nozzle designs with different curvatures: the concave “bell,” straight conical, and convex “trumpet” nozzles. We demonstrate that for mm-scale axisymmetric nozzles that, at mm-scale distances from the nozzle exit, curvature significantly impacts shock formation and the resulting gas jet density field and, therefore, is an essential parameter in LPA gas jet design. We show that bell nozzles are able to produce focused regions of gas with higher densities. We find that the trumpet nozzle, similar to straight and bell nozzles, can produce flat-top profiles if optimized correctly and can produce flatter profiles at the cost of slightly wider edges. An optimization procedure for the trumpet nozzle is derived and compared to the straight nozzle optimization process. We present results for different nozzle designs from computational fluid dynamics simulations performed with the program ANSYS Fluent and verify them experimentally using neutral density interferometry.
doi_str_mv 10.1063/5.0058963
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1817644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572695468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a97566042032d37a5275305892ca765e3763b8d19ea50e607e828c54ad52b8db3</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFYXvsGgK4XUSeY3Syn1BwpuLLgbppMbTUln4kwi2JXv4Bv6JCama1f3cPm495yD0HlKZikR9IbPCOEqF_QATVKi8kQKyQ4HLUkiBHs5RicxbgghTHA1QatFWYJtsS-x87tdDdh24cO0XQDsHY5dAyF6V1n8aiLeQBtxF6HAlcO1iRB-vr6bXmwNNtZCDcG0lXen6Kg0dYSz_Zyi1d3ief6QLJ_uH-e3y8TSNG8Tk0suBGEZoVlBpeGZ5HSwn1kjBQcqBV2rIs3BcAKCSFCZspyZgmf9fk2n6GK862Nb6WirFuyb9c71kXSqUikY66HLEWqCf-8gtnrju-B6XzrjMhM5Z0L11NVI2eBjDFDqJlRbEz51SvRQreZ6X23PXo_s8PEv8D_wL2UJeBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572695468</pqid></control><display><type>article</type><title>Effect of nozzle curvature on supersonic gas jets used in laser–plasma acceleration</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhou, Ocean ; Tsai, Hai-En ; Ostermayr, Tobias M. ; Fan-Chiang, Liona ; van Tilborg, Jeroen ; Schroeder, Carl B. ; Esarey, Eric ; Geddes, Cameron G. R.</creator><creatorcontrib>Zhou, Ocean ; Tsai, Hai-En ; Ostermayr, Tobias M. ; Fan-Chiang, Liona ; van Tilborg, Jeroen ; Schroeder, Carl B. ; Esarey, Eric ; Geddes, Cameron G. R. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Supersonic gas jets produced by converging–diverging nozzles are commonly used as targets for laser–plasma acceleration (LPA) experiments. A major point of interest for these targets is the gas density at the region of interaction where the laser ionizes the gas plume to create a plasma, providing the acceleration structure. Tuning the density profiles at this interaction region is crucial to LPA optimization. A “flat-top” density profile is desired at the line of interaction to control laser propagation and high-energy electron acceleration, while a short high-density profile is often preferred for acceleration of lower-energy tightly focused laser–plasma interactions. A particular design parameter of interest is the curvature of the nozzle's diverging section. We examine three nozzle designs with different curvatures: the concave “bell,” straight conical, and convex “trumpet” nozzles. We demonstrate that for mm-scale axisymmetric nozzles that, at mm-scale distances from the nozzle exit, curvature significantly impacts shock formation and the resulting gas jet density field and, therefore, is an essential parameter in LPA gas jet design. We show that bell nozzles are able to produce focused regions of gas with higher densities. We find that the trumpet nozzle, similar to straight and bell nozzles, can produce flat-top profiles if optimized correctly and can produce flatter profiles at the cost of slightly wider edges. An optimization procedure for the trumpet nozzle is derived and compared to the straight nozzle optimization process. We present results for different nozzle designs from computational fluid dynamics simulations performed with the program ANSYS Fluent and verify them experimentally using neutral density interferometry.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0058963</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; CAD ; Computational fluid dynamics ; Computer aided design ; Conical nozzles ; Curvature ; Design parameters ; Electron acceleration ; Gas density ; Gas jets ; High energy electrons ; Lasers ; Nozzles ; Optimization ; Plasma ; Plasma acceleration ; Plasma interactions ; Plasma physics</subject><ispartof>Physics of plasmas, 2021-09, Vol.28 (9)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a97566042032d37a5275305892ca765e3763b8d19ea50e607e828c54ad52b8db3</citedby><cites>FETCH-LOGICAL-c319t-a97566042032d37a5275305892ca765e3763b8d19ea50e607e828c54ad52b8db3</cites><orcidid>0000-0002-8667-5468 ; 0000-0002-7028-7735 ; 0000-0002-3763-9743 ; 0000-0002-7919-2636 ; 0000-0002-9610-0166 ; 0000-0001-6913-1066 ; 0000-0003-1665-4175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0058963$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1817644$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Ocean</creatorcontrib><creatorcontrib>Tsai, Hai-En</creatorcontrib><creatorcontrib>Ostermayr, Tobias M.</creatorcontrib><creatorcontrib>Fan-Chiang, Liona</creatorcontrib><creatorcontrib>van Tilborg, Jeroen</creatorcontrib><creatorcontrib>Schroeder, Carl B.</creatorcontrib><creatorcontrib>Esarey, Eric</creatorcontrib><creatorcontrib>Geddes, Cameron G. R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Effect of nozzle curvature on supersonic gas jets used in laser–plasma acceleration</title><title>Physics of plasmas</title><description>Supersonic gas jets produced by converging–diverging nozzles are commonly used as targets for laser–plasma acceleration (LPA) experiments. A major point of interest for these targets is the gas density at the region of interaction where the laser ionizes the gas plume to create a plasma, providing the acceleration structure. Tuning the density profiles at this interaction region is crucial to LPA optimization. A “flat-top” density profile is desired at the line of interaction to control laser propagation and high-energy electron acceleration, while a short high-density profile is often preferred for acceleration of lower-energy tightly focused laser–plasma interactions. A particular design parameter of interest is the curvature of the nozzle's diverging section. We examine three nozzle designs with different curvatures: the concave “bell,” straight conical, and convex “trumpet” nozzles. We demonstrate that for mm-scale axisymmetric nozzles that, at mm-scale distances from the nozzle exit, curvature significantly impacts shock formation and the resulting gas jet density field and, therefore, is an essential parameter in LPA gas jet design. We show that bell nozzles are able to produce focused regions of gas with higher densities. We find that the trumpet nozzle, similar to straight and bell nozzles, can produce flat-top profiles if optimized correctly and can produce flatter profiles at the cost of slightly wider edges. An optimization procedure for the trumpet nozzle is derived and compared to the straight nozzle optimization process. We present results for different nozzle designs from computational fluid dynamics simulations performed with the program ANSYS Fluent and verify them experimentally using neutral density interferometry.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>CAD</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Conical nozzles</subject><subject>Curvature</subject><subject>Design parameters</subject><subject>Electron acceleration</subject><subject>Gas density</subject><subject>Gas jets</subject><subject>High energy electrons</subject><subject>Lasers</subject><subject>Nozzles</subject><subject>Optimization</subject><subject>Plasma</subject><subject>Plasma acceleration</subject><subject>Plasma interactions</subject><subject>Plasma physics</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFYXvsGgK4XUSeY3Syn1BwpuLLgbppMbTUln4kwi2JXv4Bv6JCama1f3cPm495yD0HlKZikR9IbPCOEqF_QATVKi8kQKyQ4HLUkiBHs5RicxbgghTHA1QatFWYJtsS-x87tdDdh24cO0XQDsHY5dAyF6V1n8aiLeQBtxF6HAlcO1iRB-vr6bXmwNNtZCDcG0lXen6Kg0dYSz_Zyi1d3ief6QLJ_uH-e3y8TSNG8Tk0suBGEZoVlBpeGZ5HSwn1kjBQcqBV2rIs3BcAKCSFCZspyZgmf9fk2n6GK862Nb6WirFuyb9c71kXSqUikY66HLEWqCf-8gtnrju-B6XzrjMhM5Z0L11NVI2eBjDFDqJlRbEz51SvRQreZ6X23PXo_s8PEv8D_wL2UJeBw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhou, Ocean</creator><creator>Tsai, Hai-En</creator><creator>Ostermayr, Tobias M.</creator><creator>Fan-Chiang, Liona</creator><creator>van Tilborg, Jeroen</creator><creator>Schroeder, Carl B.</creator><creator>Esarey, Eric</creator><creator>Geddes, Cameron G. R.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8667-5468</orcidid><orcidid>https://orcid.org/0000-0002-7028-7735</orcidid><orcidid>https://orcid.org/0000-0002-3763-9743</orcidid><orcidid>https://orcid.org/0000-0002-7919-2636</orcidid><orcidid>https://orcid.org/0000-0002-9610-0166</orcidid><orcidid>https://orcid.org/0000-0001-6913-1066</orcidid><orcidid>https://orcid.org/0000-0003-1665-4175</orcidid></search><sort><creationdate>20210901</creationdate><title>Effect of nozzle curvature on supersonic gas jets used in laser–plasma acceleration</title><author>Zhou, Ocean ; Tsai, Hai-En ; Ostermayr, Tobias M. ; Fan-Chiang, Liona ; van Tilborg, Jeroen ; Schroeder, Carl B. ; Esarey, Eric ; Geddes, Cameron G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a97566042032d37a5275305892ca765e3763b8d19ea50e607e828c54ad52b8db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>CAD</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Conical nozzles</topic><topic>Curvature</topic><topic>Design parameters</topic><topic>Electron acceleration</topic><topic>Gas density</topic><topic>Gas jets</topic><topic>High energy electrons</topic><topic>Lasers</topic><topic>Nozzles</topic><topic>Optimization</topic><topic>Plasma</topic><topic>Plasma acceleration</topic><topic>Plasma interactions</topic><topic>Plasma physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ocean</creatorcontrib><creatorcontrib>Tsai, Hai-En</creatorcontrib><creatorcontrib>Ostermayr, Tobias M.</creatorcontrib><creatorcontrib>Fan-Chiang, Liona</creatorcontrib><creatorcontrib>van Tilborg, Jeroen</creatorcontrib><creatorcontrib>Schroeder, Carl B.</creatorcontrib><creatorcontrib>Esarey, Eric</creatorcontrib><creatorcontrib>Geddes, Cameron G. R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ocean</au><au>Tsai, Hai-En</au><au>Ostermayr, Tobias M.</au><au>Fan-Chiang, Liona</au><au>van Tilborg, Jeroen</au><au>Schroeder, Carl B.</au><au>Esarey, Eric</au><au>Geddes, Cameron G. R.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of nozzle curvature on supersonic gas jets used in laser–plasma acceleration</atitle><jtitle>Physics of plasmas</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>28</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Supersonic gas jets produced by converging–diverging nozzles are commonly used as targets for laser–plasma acceleration (LPA) experiments. A major point of interest for these targets is the gas density at the region of interaction where the laser ionizes the gas plume to create a plasma, providing the acceleration structure. Tuning the density profiles at this interaction region is crucial to LPA optimization. A “flat-top” density profile is desired at the line of interaction to control laser propagation and high-energy electron acceleration, while a short high-density profile is often preferred for acceleration of lower-energy tightly focused laser–plasma interactions. A particular design parameter of interest is the curvature of the nozzle's diverging section. We examine three nozzle designs with different curvatures: the concave “bell,” straight conical, and convex “trumpet” nozzles. We demonstrate that for mm-scale axisymmetric nozzles that, at mm-scale distances from the nozzle exit, curvature significantly impacts shock formation and the resulting gas jet density field and, therefore, is an essential parameter in LPA gas jet design. We show that bell nozzles are able to produce focused regions of gas with higher densities. We find that the trumpet nozzle, similar to straight and bell nozzles, can produce flat-top profiles if optimized correctly and can produce flatter profiles at the cost of slightly wider edges. An optimization procedure for the trumpet nozzle is derived and compared to the straight nozzle optimization process. We present results for different nozzle designs from computational fluid dynamics simulations performed with the program ANSYS Fluent and verify them experimentally using neutral density interferometry.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0058963</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8667-5468</orcidid><orcidid>https://orcid.org/0000-0002-7028-7735</orcidid><orcidid>https://orcid.org/0000-0002-3763-9743</orcidid><orcidid>https://orcid.org/0000-0002-7919-2636</orcidid><orcidid>https://orcid.org/0000-0002-9610-0166</orcidid><orcidid>https://orcid.org/0000-0001-6913-1066</orcidid><orcidid>https://orcid.org/0000-0003-1665-4175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2021-09, Vol.28 (9)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1817644
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
CAD
Computational fluid dynamics
Computer aided design
Conical nozzles
Curvature
Design parameters
Electron acceleration
Gas density
Gas jets
High energy electrons
Lasers
Nozzles
Optimization
Plasma
Plasma acceleration
Plasma interactions
Plasma physics
title Effect of nozzle curvature on supersonic gas jets used in laser–plasma acceleration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20nozzle%20curvature%20on%20supersonic%20gas%20jets%20used%20in%20laser%E2%80%93plasma%20acceleration&rft.jtitle=Physics%20of%20plasmas&rft.au=Zhou,%20Ocean&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-09-01&rft.volume=28&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0058963&rft_dat=%3Cproquest_osti_%3E2572695468%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572695468&rft_id=info:pmid/&rfr_iscdi=true