Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers

The differential capacitance profile of electrochemical interfaces reflects the physical properties of the double layer. For carbon electrodes and ionic-liquid-based electrolytes, these capacitance profiles are not fully understood. In this work, we utilize constant voltage molecular dynamics simula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-09, Vol.125 (37), p.20204-20218
Hauptverfasser: Tu, Yi-Jung, McDaniel, Jesse G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20218
container_issue 37
container_start_page 20204
container_title Journal of physical chemistry. C
container_volume 125
creator Tu, Yi-Jung
McDaniel, Jesse G
description The differential capacitance profile of electrochemical interfaces reflects the physical properties of the double layer. For carbon electrodes and ionic-liquid-based electrolytes, these capacitance profiles are not fully understood. In this work, we utilize constant voltage molecular dynamics simulations to compute differential capacitance profiles of ionic liquids [BMIm+]­[BF4 –] and [BMIm+]­[TFSI–] mixed with acetonitrile and 1,2-dichloroethane, at model graphene electrodes. We find that both pure and 10% mole fraction ionic liquid electrolytes exhibit camel-shaped capacitance profiles with two peaks on either side of a minimum centered at the potential of zero charge. This profile shape results from the electric-field-induced rearrangement of ion structure within the inner layer closest to the electrode interface. At a low potential, the ionic liquid inner layer is concentrated with nonpolar trifluoromethyl and butyl functional groups of the anions and cations, corresponding to the minimum of the capacitance profiles. With increasing voltage, electrostatic interactions of polar/charged functional groups with the electrode surface compete with these nonpolar interactions, leading to ion rearrangement that increases the inner-layer charge density and results in higher capacitance. After the ion restructuring is complete, the response saturates and capacitance diminishes. The presence of organic solvent significantly changes the composition of the inner layer. For example, strong nonpolar interactions between dichloroethane molecules and the graphene surface substantially block ion/electrode contact at moderate potentials. Overall, our simulations highlight the dynamic nature of the inner region of organic electrolyte double layers and the sensitive dependence on electrolyte composition and applied voltage.
doi_str_mv 10.1021/acs.jpcc.1c05698
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1814961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c891712924</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-766ee5afab4d764516f94784f8be32d23c36bdefb84a4792a5e29ab6de28d1b03</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5xhxJq0dO05yRAVKpUhI_EjcrI2zUV2FONjOoTfegTfkSUhpxY3TrrQzq5mPkEtGZ4wmbA7azza91jOmaSqL_IhMWMGTOBNpevy3i-yUnHm_oTTllPEJeXsObtBhcPj9-bWAHrQJ0GmMnrCFYGzn16b3kW2ipYN-jR3OV7YzOirNx2Dq6K5FHZxttwGjWztULUYlbNH5c3LSQOvx4jCn5PX-7mXxEJePy9XipoyBiyLEmZSIKTRQiTqTImWyKUSWiyavkCd1wjWXVY1NlQsQWZFAikkBlawxyWtWUT4lV_u_1gej_Bgf9VrbrhtzKZYzUUg2iuhepJ313mGjemfewW0Vo2qHT4341A6fOuAbLdd7y-_FDq4bW_wv_wHArnZB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers</title><source>ACS Publications</source><creator>Tu, Yi-Jung ; McDaniel, Jesse G</creator><creatorcontrib>Tu, Yi-Jung ; McDaniel, Jesse G ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>The differential capacitance profile of electrochemical interfaces reflects the physical properties of the double layer. For carbon electrodes and ionic-liquid-based electrolytes, these capacitance profiles are not fully understood. In this work, we utilize constant voltage molecular dynamics simulations to compute differential capacitance profiles of ionic liquids [BMIm+]­[BF4 –] and [BMIm+]­[TFSI–] mixed with acetonitrile and 1,2-dichloroethane, at model graphene electrodes. We find that both pure and 10% mole fraction ionic liquid electrolytes exhibit camel-shaped capacitance profiles with two peaks on either side of a minimum centered at the potential of zero charge. This profile shape results from the electric-field-induced rearrangement of ion structure within the inner layer closest to the electrode interface. At a low potential, the ionic liquid inner layer is concentrated with nonpolar trifluoromethyl and butyl functional groups of the anions and cations, corresponding to the minimum of the capacitance profiles. With increasing voltage, electrostatic interactions of polar/charged functional groups with the electrode surface compete with these nonpolar interactions, leading to ion rearrangement that increases the inner-layer charge density and results in higher capacitance. After the ion restructuring is complete, the response saturates and capacitance diminishes. The presence of organic solvent significantly changes the composition of the inner layer. For example, strong nonpolar interactions between dichloroethane molecules and the graphene surface substantially block ion/electrode contact at moderate potentials. Overall, our simulations highlight the dynamic nature of the inner region of organic electrolyte double layers and the sensitive dependence on electrolyte composition and applied voltage.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c05698</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Energy Conversion and Storage ; Electrical properties ; Electrodes ; Electrolytes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Salts ; Solvents</subject><ispartof>Journal of physical chemistry. C, 2021-09, Vol.125 (37), p.20204-20218</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-766ee5afab4d764516f94784f8be32d23c36bdefb84a4792a5e29ab6de28d1b03</citedby><cites>FETCH-LOGICAL-a349t-766ee5afab4d764516f94784f8be32d23c36bdefb84a4792a5e29ab6de28d1b03</cites><orcidid>0000-0002-9211-1108 ; 0000000292111108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c05698$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c05698$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1814961$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Yi-Jung</creatorcontrib><creatorcontrib>McDaniel, Jesse G</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The differential capacitance profile of electrochemical interfaces reflects the physical properties of the double layer. For carbon electrodes and ionic-liquid-based electrolytes, these capacitance profiles are not fully understood. In this work, we utilize constant voltage molecular dynamics simulations to compute differential capacitance profiles of ionic liquids [BMIm+]­[BF4 –] and [BMIm+]­[TFSI–] mixed with acetonitrile and 1,2-dichloroethane, at model graphene electrodes. We find that both pure and 10% mole fraction ionic liquid electrolytes exhibit camel-shaped capacitance profiles with two peaks on either side of a minimum centered at the potential of zero charge. This profile shape results from the electric-field-induced rearrangement of ion structure within the inner layer closest to the electrode interface. At a low potential, the ionic liquid inner layer is concentrated with nonpolar trifluoromethyl and butyl functional groups of the anions and cations, corresponding to the minimum of the capacitance profiles. With increasing voltage, electrostatic interactions of polar/charged functional groups with the electrode surface compete with these nonpolar interactions, leading to ion rearrangement that increases the inner-layer charge density and results in higher capacitance. After the ion restructuring is complete, the response saturates and capacitance diminishes. The presence of organic solvent significantly changes the composition of the inner layer. For example, strong nonpolar interactions between dichloroethane molecules and the graphene surface substantially block ion/electrode contact at moderate potentials. Overall, our simulations highlight the dynamic nature of the inner region of organic electrolyte double layers and the sensitive dependence on electrolyte composition and applied voltage.</description><subject>C: Energy Conversion and Storage</subject><subject>Electrical properties</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Salts</subject><subject>Solvents</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5xhxJq0dO05yRAVKpUhI_EjcrI2zUV2FONjOoTfegTfkSUhpxY3TrrQzq5mPkEtGZ4wmbA7azza91jOmaSqL_IhMWMGTOBNpevy3i-yUnHm_oTTllPEJeXsObtBhcPj9-bWAHrQJ0GmMnrCFYGzn16b3kW2ipYN-jR3OV7YzOirNx2Dq6K5FHZxttwGjWztULUYlbNH5c3LSQOvx4jCn5PX-7mXxEJePy9XipoyBiyLEmZSIKTRQiTqTImWyKUSWiyavkCd1wjWXVY1NlQsQWZFAikkBlawxyWtWUT4lV_u_1gej_Bgf9VrbrhtzKZYzUUg2iuhepJ313mGjemfewW0Vo2qHT4341A6fOuAbLdd7y-_FDq4bW_wv_wHArnZB</recordid><startdate>20210923</startdate><enddate>20210923</enddate><creator>Tu, Yi-Jung</creator><creator>McDaniel, Jesse G</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9211-1108</orcidid><orcidid>https://orcid.org/0000000292111108</orcidid></search><sort><creationdate>20210923</creationdate><title>Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers</title><author>Tu, Yi-Jung ; McDaniel, Jesse G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-766ee5afab4d764516f94784f8be32d23c36bdefb84a4792a5e29ab6de28d1b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Energy Conversion and Storage</topic><topic>Electrical properties</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Salts</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Yi-Jung</creatorcontrib><creatorcontrib>McDaniel, Jesse G</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Yi-Jung</au><au>McDaniel, Jesse G</au><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-09-23</date><risdate>2021</risdate><volume>125</volume><issue>37</issue><spage>20204</spage><epage>20218</epage><pages>20204-20218</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The differential capacitance profile of electrochemical interfaces reflects the physical properties of the double layer. For carbon electrodes and ionic-liquid-based electrolytes, these capacitance profiles are not fully understood. In this work, we utilize constant voltage molecular dynamics simulations to compute differential capacitance profiles of ionic liquids [BMIm+]­[BF4 –] and [BMIm+]­[TFSI–] mixed with acetonitrile and 1,2-dichloroethane, at model graphene electrodes. We find that both pure and 10% mole fraction ionic liquid electrolytes exhibit camel-shaped capacitance profiles with two peaks on either side of a minimum centered at the potential of zero charge. This profile shape results from the electric-field-induced rearrangement of ion structure within the inner layer closest to the electrode interface. At a low potential, the ionic liquid inner layer is concentrated with nonpolar trifluoromethyl and butyl functional groups of the anions and cations, corresponding to the minimum of the capacitance profiles. With increasing voltage, electrostatic interactions of polar/charged functional groups with the electrode surface compete with these nonpolar interactions, leading to ion rearrangement that increases the inner-layer charge density and results in higher capacitance. After the ion restructuring is complete, the response saturates and capacitance diminishes. The presence of organic solvent significantly changes the composition of the inner layer. For example, strong nonpolar interactions between dichloroethane molecules and the graphene surface substantially block ion/electrode contact at moderate potentials. Overall, our simulations highlight the dynamic nature of the inner region of organic electrolyte double layers and the sensitive dependence on electrolyte composition and applied voltage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c05698</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9211-1108</orcidid><orcidid>https://orcid.org/0000000292111108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-09, Vol.125 (37), p.20204-20218
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1814961
source ACS Publications
subjects C: Energy Conversion and Storage
Electrical properties
Electrodes
Electrolytes
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Salts
Solvents
title Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93Capacitance%20Relationships%20of%20Graphene/Ionic%20Liquid%20Electrolyte%20Double%20Layers&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Tu,%20Yi-Jung&rft.aucorp=Georgia%20Institute%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2021-09-23&rft.volume=125&rft.issue=37&rft.spage=20204&rft.epage=20218&rft.pages=20204-20218&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c05698&rft_dat=%3Cacs_osti_%3Ec891712924%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true