Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution
The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a th...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-07, Vol.13 (29), p.34419-34427 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34427 |
---|---|
container_issue | 29 |
container_start_page | 34419 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Chen, Keying Ray, Debmalya Ziebel, Michael E Gaggioli, Carlo A Gagliardi, Laura Marinescu, Smaranda C |
description | The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu[Ni(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at −0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2 ) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2 . It is proposed that the activation process is a result of the cleavage of Cu–N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations. |
doi_str_mv | 10.1021/acsami.1c08998 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1813011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553241514</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-d2d73868c4c6dd7e471f15923d52eeb24b0f203b21e2150b13007cc0351ae5483</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxiMEElBYmSMmQKT4_KdJR1S1gFRggQkhy3UuxZDGxXZAZeIdeEOeBKNUbEx3uvt9p---JDkA0gdC4UxprxamD5oUw2GxkezAkPOsoIJu_vWcbye73j8TMmCUiJ1EjdqHG3NET1m2XDn1YRosTXgytlYBj-ljeo1B1d-fX7durhqj04lTC3y37iWtrEvHNergrFYRWoW4vlyVzs6xScdvtm6Dsc1eslWp2uP-uvaS-8n4bnSZTW8vrkbn00yxnIespGXOikGhuR6UZY48hwrEkLJSUMQZ5TNSUcJmFJCCIDNghORaEyZAoeAF6yWH3V3rg5Fem4D6SdumiQ4lFJEHiNBRBy2dfW3RB7kwXmNdqwZt6yUVglEOAnhE-x2qnfXeYSWXziyUW0kg8jdw2QUu14FHwUkniHP5bFvXxHf_g38ACg-DPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553241514</pqid></control><display><type>article</type><title>Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution</title><source>ACS Publications</source><creator>Chen, Keying ; Ray, Debmalya ; Ziebel, Michael E ; Gaggioli, Carlo A ; Gagliardi, Laura ; Marinescu, Smaranda C</creator><creatorcontrib>Chen, Keying ; Ray, Debmalya ; Ziebel, Michael E ; Gaggioli, Carlo A ; Gagliardi, Laura ; Marinescu, Smaranda C ; Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><description>The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu[Ni(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at −0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2 ) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2 . It is proposed that the activation process is a result of the cleavage of Cu–N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c08998</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysts ; density functional theory ; dithiolene ; electrocatalysis ; electrolysis ; Energy, Environmental, and Catalysis Applications ; evolution reactions ; hydrogen evolution ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; materials ; metal−organic framework</subject><ispartof>ACS applied materials & interfaces, 2021-07, Vol.13 (29), p.34419-34427</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-d2d73868c4c6dd7e471f15923d52eeb24b0f203b21e2150b13007cc0351ae5483</citedby><cites>FETCH-LOGICAL-a374t-d2d73868c4c6dd7e471f15923d52eeb24b0f203b21e2150b13007cc0351ae5483</cites><orcidid>0000-0001-9105-8731 ; 0000-0002-8309-8183 ; 0000-0001-5227-1396 ; 0000-0003-1857-8292 ; 0000-0003-2106-8971 ; 0000000318578292 ; 0000000152271396 ; 0000000191058731 ; 0000000321068971 ; 0000000283098183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c08998$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c08998$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1813011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Keying</creatorcontrib><creatorcontrib>Ray, Debmalya</creatorcontrib><creatorcontrib>Ziebel, Michael E</creatorcontrib><creatorcontrib>Gaggioli, Carlo A</creatorcontrib><creatorcontrib>Gagliardi, Laura</creatorcontrib><creatorcontrib>Marinescu, Smaranda C</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><title>Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu[Ni(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at −0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2 ) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2 . It is proposed that the activation process is a result of the cleavage of Cu–N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.</description><subject>catalysts</subject><subject>density functional theory</subject><subject>dithiolene</subject><subject>electrocatalysis</subject><subject>electrolysis</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>evolution reactions</subject><subject>hydrogen evolution</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>materials</subject><subject>metal−organic framework</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxiMEElBYmSMmQKT4_KdJR1S1gFRggQkhy3UuxZDGxXZAZeIdeEOeBKNUbEx3uvt9p---JDkA0gdC4UxprxamD5oUw2GxkezAkPOsoIJu_vWcbye73j8TMmCUiJ1EjdqHG3NET1m2XDn1YRosTXgytlYBj-ljeo1B1d-fX7durhqj04lTC3y37iWtrEvHNergrFYRWoW4vlyVzs6xScdvtm6Dsc1eslWp2uP-uvaS-8n4bnSZTW8vrkbn00yxnIespGXOikGhuR6UZY48hwrEkLJSUMQZ5TNSUcJmFJCCIDNghORaEyZAoeAF6yWH3V3rg5Fem4D6SdumiQ4lFJEHiNBRBy2dfW3RB7kwXmNdqwZt6yUVglEOAnhE-x2qnfXeYSWXziyUW0kg8jdw2QUu14FHwUkniHP5bFvXxHf_g38ACg-DPA</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Chen, Keying</creator><creator>Ray, Debmalya</creator><creator>Ziebel, Michael E</creator><creator>Gaggioli, Carlo A</creator><creator>Gagliardi, Laura</creator><creator>Marinescu, Smaranda C</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9105-8731</orcidid><orcidid>https://orcid.org/0000-0002-8309-8183</orcidid><orcidid>https://orcid.org/0000-0001-5227-1396</orcidid><orcidid>https://orcid.org/0000-0003-1857-8292</orcidid><orcidid>https://orcid.org/0000-0003-2106-8971</orcidid><orcidid>https://orcid.org/0000000318578292</orcidid><orcidid>https://orcid.org/0000000152271396</orcidid><orcidid>https://orcid.org/0000000191058731</orcidid><orcidid>https://orcid.org/0000000321068971</orcidid><orcidid>https://orcid.org/0000000283098183</orcidid></search><sort><creationdate>20210728</creationdate><title>Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution</title><author>Chen, Keying ; Ray, Debmalya ; Ziebel, Michael E ; Gaggioli, Carlo A ; Gagliardi, Laura ; Marinescu, Smaranda C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-d2d73868c4c6dd7e471f15923d52eeb24b0f203b21e2150b13007cc0351ae5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>catalysts</topic><topic>density functional theory</topic><topic>dithiolene</topic><topic>electrocatalysis</topic><topic>electrolysis</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>evolution reactions</topic><topic>hydrogen evolution</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>materials</topic><topic>metal−organic framework</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Keying</creatorcontrib><creatorcontrib>Ray, Debmalya</creatorcontrib><creatorcontrib>Ziebel, Michael E</creatorcontrib><creatorcontrib>Gaggioli, Carlo A</creatorcontrib><creatorcontrib>Gagliardi, Laura</creatorcontrib><creatorcontrib>Marinescu, Smaranda C</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Keying</au><au>Ray, Debmalya</au><au>Ziebel, Michael E</au><au>Gaggioli, Carlo A</au><au>Gagliardi, Laura</au><au>Marinescu, Smaranda C</au><aucorp>Univ. of Minnesota, Minneapolis, MN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-07-28</date><risdate>2021</risdate><volume>13</volume><issue>29</issue><spage>34419</spage><epage>34427</epage><pages>34419-34427</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu[Ni(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at −0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2 ) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2 . It is proposed that the activation process is a result of the cleavage of Cu–N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsami.1c08998</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9105-8731</orcidid><orcidid>https://orcid.org/0000-0002-8309-8183</orcidid><orcidid>https://orcid.org/0000-0001-5227-1396</orcidid><orcidid>https://orcid.org/0000-0003-1857-8292</orcidid><orcidid>https://orcid.org/0000-0003-2106-8971</orcidid><orcidid>https://orcid.org/0000000318578292</orcidid><orcidid>https://orcid.org/0000000152271396</orcidid><orcidid>https://orcid.org/0000000191058731</orcidid><orcidid>https://orcid.org/0000000321068971</orcidid><orcidid>https://orcid.org/0000000283098183</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-07, Vol.13 (29), p.34419-34427 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1813011 |
source | ACS Publications |
subjects | catalysts density functional theory dithiolene electrocatalysis electrolysis Energy, Environmental, and Catalysis Applications evolution reactions hydrogen evolution INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY materials metal−organic framework |
title | Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu%5BNi(2,3-pyrazinedithiolate)2%5D%20Metal%E2%80%93Organic%20Framework%20for%20Electrocatalytic%20Hydrogen%20Evolution&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Keying&rft.aucorp=Univ.%20of%20Minnesota,%20Minneapolis,%20MN%20(United%20States)&rft.date=2021-07-28&rft.volume=13&rft.issue=29&rft.spage=34419&rft.epage=34427&rft.pages=34419-34427&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c08998&rft_dat=%3Cproquest_osti_%3E2553241514%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553241514&rft_id=info:pmid/&rfr_iscdi=true |