Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution

The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-07, Vol.13 (29), p.34419-34427
Hauptverfasser: Chen, Keying, Ray, Debmalya, Ziebel, Michael E, Gaggioli, Carlo A, Gagliardi, Laura, Marinescu, Smaranda C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34427
container_issue 29
container_start_page 34419
container_title ACS applied materials & interfaces
container_volume 13
creator Chen, Keying
Ray, Debmalya
Ziebel, Michael E
Gaggioli, Carlo A
Gagliardi, Laura
Marinescu, Smaranda C
description The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu­[Ni­(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at −0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2 ) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2 . It is proposed that the activation process is a result of the cleavage of Cu–N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.
doi_str_mv 10.1021/acsami.1c08998
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1813011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553241514</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-d2d73868c4c6dd7e471f15923d52eeb24b0f203b21e2150b13007cc0351ae5483</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxiMEElBYmSMmQKT4_KdJR1S1gFRggQkhy3UuxZDGxXZAZeIdeEOeBKNUbEx3uvt9p---JDkA0gdC4UxprxamD5oUw2GxkezAkPOsoIJu_vWcbye73j8TMmCUiJ1EjdqHG3NET1m2XDn1YRosTXgytlYBj-ljeo1B1d-fX7durhqj04lTC3y37iWtrEvHNergrFYRWoW4vlyVzs6xScdvtm6Dsc1eslWp2uP-uvaS-8n4bnSZTW8vrkbn00yxnIespGXOikGhuR6UZY48hwrEkLJSUMQZ5TNSUcJmFJCCIDNghORaEyZAoeAF6yWH3V3rg5Fem4D6SdumiQ4lFJEHiNBRBy2dfW3RB7kwXmNdqwZt6yUVglEOAnhE-x2qnfXeYSWXziyUW0kg8jdw2QUu14FHwUkniHP5bFvXxHf_g38ACg-DPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553241514</pqid></control><display><type>article</type><title>Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution</title><source>ACS Publications</source><creator>Chen, Keying ; Ray, Debmalya ; Ziebel, Michael E ; Gaggioli, Carlo A ; Gagliardi, Laura ; Marinescu, Smaranda C</creator><creatorcontrib>Chen, Keying ; Ray, Debmalya ; Ziebel, Michael E ; Gaggioli, Carlo A ; Gagliardi, Laura ; Marinescu, Smaranda C ; Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><description>The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu­[Ni­(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at −0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2 ) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2 . It is proposed that the activation process is a result of the cleavage of Cu–N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c08998</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysts ; density functional theory ; dithiolene ; electrocatalysis ; electrolysis ; Energy, Environmental, and Catalysis Applications ; evolution reactions ; hydrogen evolution ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; materials ; metal−organic framework</subject><ispartof>ACS applied materials &amp; interfaces, 2021-07, Vol.13 (29), p.34419-34427</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-d2d73868c4c6dd7e471f15923d52eeb24b0f203b21e2150b13007cc0351ae5483</citedby><cites>FETCH-LOGICAL-a374t-d2d73868c4c6dd7e471f15923d52eeb24b0f203b21e2150b13007cc0351ae5483</cites><orcidid>0000-0001-9105-8731 ; 0000-0002-8309-8183 ; 0000-0001-5227-1396 ; 0000-0003-1857-8292 ; 0000-0003-2106-8971 ; 0000000318578292 ; 0000000152271396 ; 0000000191058731 ; 0000000321068971 ; 0000000283098183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c08998$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c08998$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1813011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Keying</creatorcontrib><creatorcontrib>Ray, Debmalya</creatorcontrib><creatorcontrib>Ziebel, Michael E</creatorcontrib><creatorcontrib>Gaggioli, Carlo A</creatorcontrib><creatorcontrib>Gagliardi, Laura</creatorcontrib><creatorcontrib>Marinescu, Smaranda C</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><title>Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu­[Ni­(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at −0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2 ) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2 . It is proposed that the activation process is a result of the cleavage of Cu–N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.</description><subject>catalysts</subject><subject>density functional theory</subject><subject>dithiolene</subject><subject>electrocatalysis</subject><subject>electrolysis</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>evolution reactions</subject><subject>hydrogen evolution</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>materials</subject><subject>metal−organic framework</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxiMEElBYmSMmQKT4_KdJR1S1gFRggQkhy3UuxZDGxXZAZeIdeEOeBKNUbEx3uvt9p---JDkA0gdC4UxprxamD5oUw2GxkezAkPOsoIJu_vWcbye73j8TMmCUiJ1EjdqHG3NET1m2XDn1YRosTXgytlYBj-ljeo1B1d-fX7durhqj04lTC3y37iWtrEvHNergrFYRWoW4vlyVzs6xScdvtm6Dsc1eslWp2uP-uvaS-8n4bnSZTW8vrkbn00yxnIespGXOikGhuR6UZY48hwrEkLJSUMQZ5TNSUcJmFJCCIDNghORaEyZAoeAF6yWH3V3rg5Fem4D6SdumiQ4lFJEHiNBRBy2dfW3RB7kwXmNdqwZt6yUVglEOAnhE-x2qnfXeYSWXziyUW0kg8jdw2QUu14FHwUkniHP5bFvXxHf_g38ACg-DPA</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Chen, Keying</creator><creator>Ray, Debmalya</creator><creator>Ziebel, Michael E</creator><creator>Gaggioli, Carlo A</creator><creator>Gagliardi, Laura</creator><creator>Marinescu, Smaranda C</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9105-8731</orcidid><orcidid>https://orcid.org/0000-0002-8309-8183</orcidid><orcidid>https://orcid.org/0000-0001-5227-1396</orcidid><orcidid>https://orcid.org/0000-0003-1857-8292</orcidid><orcidid>https://orcid.org/0000-0003-2106-8971</orcidid><orcidid>https://orcid.org/0000000318578292</orcidid><orcidid>https://orcid.org/0000000152271396</orcidid><orcidid>https://orcid.org/0000000191058731</orcidid><orcidid>https://orcid.org/0000000321068971</orcidid><orcidid>https://orcid.org/0000000283098183</orcidid></search><sort><creationdate>20210728</creationdate><title>Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution</title><author>Chen, Keying ; Ray, Debmalya ; Ziebel, Michael E ; Gaggioli, Carlo A ; Gagliardi, Laura ; Marinescu, Smaranda C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-d2d73868c4c6dd7e471f15923d52eeb24b0f203b21e2150b13007cc0351ae5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>catalysts</topic><topic>density functional theory</topic><topic>dithiolene</topic><topic>electrocatalysis</topic><topic>electrolysis</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>evolution reactions</topic><topic>hydrogen evolution</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>materials</topic><topic>metal−organic framework</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Keying</creatorcontrib><creatorcontrib>Ray, Debmalya</creatorcontrib><creatorcontrib>Ziebel, Michael E</creatorcontrib><creatorcontrib>Gaggioli, Carlo A</creatorcontrib><creatorcontrib>Gagliardi, Laura</creatorcontrib><creatorcontrib>Marinescu, Smaranda C</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Keying</au><au>Ray, Debmalya</au><au>Ziebel, Michael E</au><au>Gaggioli, Carlo A</au><au>Gagliardi, Laura</au><au>Marinescu, Smaranda C</au><aucorp>Univ. of Minnesota, Minneapolis, MN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-07-28</date><risdate>2021</risdate><volume>13</volume><issue>29</issue><spage>34419</spage><epage>34427</epage><pages>34419-34427</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The application of metal–organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu­[Ni­(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at −0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2 ) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2 . It is proposed that the activation process is a result of the cleavage of Cu–N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsami.1c08998</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9105-8731</orcidid><orcidid>https://orcid.org/0000-0002-8309-8183</orcidid><orcidid>https://orcid.org/0000-0001-5227-1396</orcidid><orcidid>https://orcid.org/0000-0003-1857-8292</orcidid><orcidid>https://orcid.org/0000-0003-2106-8971</orcidid><orcidid>https://orcid.org/0000000318578292</orcidid><orcidid>https://orcid.org/0000000152271396</orcidid><orcidid>https://orcid.org/0000000191058731</orcidid><orcidid>https://orcid.org/0000000321068971</orcidid><orcidid>https://orcid.org/0000000283098183</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-07, Vol.13 (29), p.34419-34427
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1813011
source ACS Publications
subjects catalysts
density functional theory
dithiolene
electrocatalysis
electrolysis
Energy, Environmental, and Catalysis Applications
evolution reactions
hydrogen evolution
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
materials
metal−organic framework
title Cu[Ni(2,3-pyrazinedithiolate)2] Metal–Organic Framework for Electrocatalytic Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu%5BNi(2,3-pyrazinedithiolate)2%5D%20Metal%E2%80%93Organic%20Framework%20for%20Electrocatalytic%20Hydrogen%20Evolution&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Keying&rft.aucorp=Univ.%20of%20Minnesota,%20Minneapolis,%20MN%20(United%20States)&rft.date=2021-07-28&rft.volume=13&rft.issue=29&rft.spage=34419&rft.epage=34427&rft.pages=34419-34427&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c08998&rft_dat=%3Cproquest_osti_%3E2553241514%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553241514&rft_id=info:pmid/&rfr_iscdi=true