Disturbance-accelerated succession increases the production of a temperate forest

Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological applications 2021-10, Vol.31 (7), p.1-17
Hauptverfasser: Gough, Christopher M., Bohrer, Gil, Hardiman, Brady S., Nave, Lucas E., Vogel, Christoph S., Atkins, Jeff W., Bond-Lamberty, Ben, Fahey, Robert T., Fotis, Alexander T., Grigri, Maxim S., Haber, Lisa T., Ju, Yang, Kleinke, Callie L., Mathes, Kayla C., Nadelhoffer, Knute J., Stuart-Haëntjens, Ellen, Curtis, Peter S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 7
container_start_page 1
container_title Ecological applications
container_volume 31
creator Gough, Christopher M.
Bohrer, Gil
Hardiman, Brady S.
Nave, Lucas E.
Vogel, Christoph S.
Atkins, Jeff W.
Bond-Lamberty, Ben
Fahey, Robert T.
Fotis, Alexander T.
Grigri, Maxim S.
Haber, Lisa T.
Ju, Yang
Kleinke, Callie L.
Mathes, Kayla C.
Nadelhoffer, Knute J.
Stuart-Haëntjens, Ellen
Curtis, Peter S.
description Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling-induced mortality of >6,700 early-successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower-based C cycling observations from the 33-ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid-late-successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1-yr recovery of total leaf area index as mid-late-successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid-late-successional species dominance improved carbon-use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid-late-successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.
doi_str_mv 10.1002/eap.2417
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1812945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27092222</jstor_id><sourcerecordid>27092222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4097-6a85431f12eafbdd57b9f1ab164e099fb4fd2d3a96274813e8dbe30f3e758a9c3</originalsourceid><addsrcrecordid>eNp10V1LwzAUBuAiCs4p-AeEojfedOajWZvLofMDBirodUjTE9bRNTUnRfbvzdxQEMxNEvLkcA5vkpxTMqGEsBvQ_YTltDhIRlRymQlRssN4JoJmpJjS4-QEcUXiYoyNkte7BsPgK90ZyLQx0ILXAeoUh3hBbFyXNp3xoBEwDUtIe-_qwYTtg7OpTgOs--8_qXUeMJwmR1a3CGf7fZy838_fbh-zxfPD0-1skZmcyCKb6lLknFrKQNuqrkVRSUt1Rac5ECltldua1VzLKSvyknIo6wo4sRwKUWpp-Di53NV1GBqFpglglsZ1HZigaEmZzEVE1zsUu_4YYndq3WAcstUduAEVE4IzLgTlkV79oSs3-C6OEFXJSkFzUvwWNN4herCq981a-42iRG0DUDEAtQ0g0mxHP5sWNv86NZ-97P3Fzq8wOP_jWUFkjIrxL1iPj-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582851407</pqid></control><display><type>article</type><title>Disturbance-accelerated succession increases the production of a temperate forest</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Jstor Complete Legacy</source><creator>Gough, Christopher M. ; Bohrer, Gil ; Hardiman, Brady S. ; Nave, Lucas E. ; Vogel, Christoph S. ; Atkins, Jeff W. ; Bond-Lamberty, Ben ; Fahey, Robert T. ; Fotis, Alexander T. ; Grigri, Maxim S. ; Haber, Lisa T. ; Ju, Yang ; Kleinke, Callie L. ; Mathes, Kayla C. ; Nadelhoffer, Knute J. ; Stuart-Haëntjens, Ellen ; Curtis, Peter S.</creator><creatorcontrib>Gough, Christopher M. ; Bohrer, Gil ; Hardiman, Brady S. ; Nave, Lucas E. ; Vogel, Christoph S. ; Atkins, Jeff W. ; Bond-Lamberty, Ben ; Fahey, Robert T. ; Fotis, Alexander T. ; Grigri, Maxim S. ; Haber, Lisa T. ; Ju, Yang ; Kleinke, Callie L. ; Mathes, Kayla C. ; Nadelhoffer, Knute J. ; Stuart-Haëntjens, Ellen ; Curtis, Peter S.</creatorcontrib><description>Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling-induced mortality of &gt;6,700 early-successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower-based C cycling observations from the 33-ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid-late-successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1-yr recovery of total leaf area index as mid-late-successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid-late-successional species dominance improved carbon-use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid-late-successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.1002/eap.2417</identifier><language>eng</language><publisher>Washington: John Wiley and Sons, Inc</publisher><subject>Aging ; AmeriFlux ; Betula papyrifera ; Birch trees ; Canopies ; Carbon ; Complexity ; Cycles ; Deciduous forests ; Disturbance ; Dominance ; Ecological succession ; Forests ; Girdling ; Growth rate ; Hypotheses ; Leaf area ; Leaf area index ; Leaves ; Mortality ; Primary production ; production ; resistance ; Respiration ; Species ; stability ; structural complexity ; succession ; Temperate forests</subject><ispartof>Ecological applications, 2021-10, Vol.31 (7), p.1-17</ispartof><rights>2021 by the Ecological Society of America</rights><rights>Copyright Ecological Society of America Oct 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4097-6a85431f12eafbdd57b9f1ab164e099fb4fd2d3a96274813e8dbe30f3e758a9c3</citedby><cites>FETCH-LOGICAL-c4097-6a85431f12eafbdd57b9f1ab164e099fb4fd2d3a96274813e8dbe30f3e758a9c3</cites><orcidid>0000-0002-1227-7731 ; 0000-0002-2295-3131 ; 0000000212277731 ; 0000000222953131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27092222$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27092222$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,883,1414,27907,27908,45557,45558,58000,58233</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1812945$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Bohrer, Gil</creatorcontrib><creatorcontrib>Hardiman, Brady S.</creatorcontrib><creatorcontrib>Nave, Lucas E.</creatorcontrib><creatorcontrib>Vogel, Christoph S.</creatorcontrib><creatorcontrib>Atkins, Jeff W.</creatorcontrib><creatorcontrib>Bond-Lamberty, Ben</creatorcontrib><creatorcontrib>Fahey, Robert T.</creatorcontrib><creatorcontrib>Fotis, Alexander T.</creatorcontrib><creatorcontrib>Grigri, Maxim S.</creatorcontrib><creatorcontrib>Haber, Lisa T.</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Kleinke, Callie L.</creatorcontrib><creatorcontrib>Mathes, Kayla C.</creatorcontrib><creatorcontrib>Nadelhoffer, Knute J.</creatorcontrib><creatorcontrib>Stuart-Haëntjens, Ellen</creatorcontrib><creatorcontrib>Curtis, Peter S.</creatorcontrib><title>Disturbance-accelerated succession increases the production of a temperate forest</title><title>Ecological applications</title><description>Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling-induced mortality of &gt;6,700 early-successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower-based C cycling observations from the 33-ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid-late-successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1-yr recovery of total leaf area index as mid-late-successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid-late-successional species dominance improved carbon-use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid-late-successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.</description><subject>Aging</subject><subject>AmeriFlux</subject><subject>Betula papyrifera</subject><subject>Birch trees</subject><subject>Canopies</subject><subject>Carbon</subject><subject>Complexity</subject><subject>Cycles</subject><subject>Deciduous forests</subject><subject>Disturbance</subject><subject>Dominance</subject><subject>Ecological succession</subject><subject>Forests</subject><subject>Girdling</subject><subject>Growth rate</subject><subject>Hypotheses</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Leaves</subject><subject>Mortality</subject><subject>Primary production</subject><subject>production</subject><subject>resistance</subject><subject>Respiration</subject><subject>Species</subject><subject>stability</subject><subject>structural complexity</subject><subject>succession</subject><subject>Temperate forests</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10V1LwzAUBuAiCs4p-AeEojfedOajWZvLofMDBirodUjTE9bRNTUnRfbvzdxQEMxNEvLkcA5vkpxTMqGEsBvQ_YTltDhIRlRymQlRssN4JoJmpJjS4-QEcUXiYoyNkte7BsPgK90ZyLQx0ILXAeoUh3hBbFyXNp3xoBEwDUtIe-_qwYTtg7OpTgOs--8_qXUeMJwmR1a3CGf7fZy838_fbh-zxfPD0-1skZmcyCKb6lLknFrKQNuqrkVRSUt1Rac5ECltldua1VzLKSvyknIo6wo4sRwKUWpp-Di53NV1GBqFpglglsZ1HZigaEmZzEVE1zsUu_4YYndq3WAcstUduAEVE4IzLgTlkV79oSs3-C6OEFXJSkFzUvwWNN4herCq981a-42iRG0DUDEAtQ0g0mxHP5sWNv86NZ-97P3Fzq8wOP_jWUFkjIrxL1iPj-0</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Gough, Christopher M.</creator><creator>Bohrer, Gil</creator><creator>Hardiman, Brady S.</creator><creator>Nave, Lucas E.</creator><creator>Vogel, Christoph S.</creator><creator>Atkins, Jeff W.</creator><creator>Bond-Lamberty, Ben</creator><creator>Fahey, Robert T.</creator><creator>Fotis, Alexander T.</creator><creator>Grigri, Maxim S.</creator><creator>Haber, Lisa T.</creator><creator>Ju, Yang</creator><creator>Kleinke, Callie L.</creator><creator>Mathes, Kayla C.</creator><creator>Nadelhoffer, Knute J.</creator><creator>Stuart-Haëntjens, Ellen</creator><creator>Curtis, Peter S.</creator><general>John Wiley and Sons, Inc</general><general>Ecological Society of America</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1227-7731</orcidid><orcidid>https://orcid.org/0000-0002-2295-3131</orcidid><orcidid>https://orcid.org/0000000212277731</orcidid><orcidid>https://orcid.org/0000000222953131</orcidid></search><sort><creationdate>202110</creationdate><title>Disturbance-accelerated succession increases the production of a temperate forest</title><author>Gough, Christopher M. ; Bohrer, Gil ; Hardiman, Brady S. ; Nave, Lucas E. ; Vogel, Christoph S. ; Atkins, Jeff W. ; Bond-Lamberty, Ben ; Fahey, Robert T. ; Fotis, Alexander T. ; Grigri, Maxim S. ; Haber, Lisa T. ; Ju, Yang ; Kleinke, Callie L. ; Mathes, Kayla C. ; Nadelhoffer, Knute J. ; Stuart-Haëntjens, Ellen ; Curtis, Peter S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4097-6a85431f12eafbdd57b9f1ab164e099fb4fd2d3a96274813e8dbe30f3e758a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging</topic><topic>AmeriFlux</topic><topic>Betula papyrifera</topic><topic>Birch trees</topic><topic>Canopies</topic><topic>Carbon</topic><topic>Complexity</topic><topic>Cycles</topic><topic>Deciduous forests</topic><topic>Disturbance</topic><topic>Dominance</topic><topic>Ecological succession</topic><topic>Forests</topic><topic>Girdling</topic><topic>Growth rate</topic><topic>Hypotheses</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Leaves</topic><topic>Mortality</topic><topic>Primary production</topic><topic>production</topic><topic>resistance</topic><topic>Respiration</topic><topic>Species</topic><topic>stability</topic><topic>structural complexity</topic><topic>succession</topic><topic>Temperate forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Bohrer, Gil</creatorcontrib><creatorcontrib>Hardiman, Brady S.</creatorcontrib><creatorcontrib>Nave, Lucas E.</creatorcontrib><creatorcontrib>Vogel, Christoph S.</creatorcontrib><creatorcontrib>Atkins, Jeff W.</creatorcontrib><creatorcontrib>Bond-Lamberty, Ben</creatorcontrib><creatorcontrib>Fahey, Robert T.</creatorcontrib><creatorcontrib>Fotis, Alexander T.</creatorcontrib><creatorcontrib>Grigri, Maxim S.</creatorcontrib><creatorcontrib>Haber, Lisa T.</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Kleinke, Callie L.</creatorcontrib><creatorcontrib>Mathes, Kayla C.</creatorcontrib><creatorcontrib>Nadelhoffer, Knute J.</creatorcontrib><creatorcontrib>Stuart-Haëntjens, Ellen</creatorcontrib><creatorcontrib>Curtis, Peter S.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gough, Christopher M.</au><au>Bohrer, Gil</au><au>Hardiman, Brady S.</au><au>Nave, Lucas E.</au><au>Vogel, Christoph S.</au><au>Atkins, Jeff W.</au><au>Bond-Lamberty, Ben</au><au>Fahey, Robert T.</au><au>Fotis, Alexander T.</au><au>Grigri, Maxim S.</au><au>Haber, Lisa T.</au><au>Ju, Yang</au><au>Kleinke, Callie L.</au><au>Mathes, Kayla C.</au><au>Nadelhoffer, Knute J.</au><au>Stuart-Haëntjens, Ellen</au><au>Curtis, Peter S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disturbance-accelerated succession increases the production of a temperate forest</atitle><jtitle>Ecological applications</jtitle><date>2021-10</date><risdate>2021</risdate><volume>31</volume><issue>7</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><abstract>Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling-induced mortality of &gt;6,700 early-successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower-based C cycling observations from the 33-ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid-late-successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1-yr recovery of total leaf area index as mid-late-successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid-late-successional species dominance improved carbon-use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid-late-successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.</abstract><cop>Washington</cop><pub>John Wiley and Sons, Inc</pub><doi>10.1002/eap.2417</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1227-7731</orcidid><orcidid>https://orcid.org/0000-0002-2295-3131</orcidid><orcidid>https://orcid.org/0000000212277731</orcidid><orcidid>https://orcid.org/0000000222953131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-0761
ispartof Ecological applications, 2021-10, Vol.31 (7), p.1-17
issn 1051-0761
1939-5582
language eng
recordid cdi_osti_scitechconnect_1812945
source Wiley Online Library Journals Frontfile Complete; Jstor Complete Legacy
subjects Aging
AmeriFlux
Betula papyrifera
Birch trees
Canopies
Carbon
Complexity
Cycles
Deciduous forests
Disturbance
Dominance
Ecological succession
Forests
Girdling
Growth rate
Hypotheses
Leaf area
Leaf area index
Leaves
Mortality
Primary production
production
resistance
Respiration
Species
stability
structural complexity
succession
Temperate forests
title Disturbance-accelerated succession increases the production of a temperate forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disturbance-accelerated%20succession%20increases%20the%20production%20of%20a%20temperate%20forest&rft.jtitle=Ecological%20applications&rft.au=Gough,%20Christopher%20M.&rft.date=2021-10&rft.volume=31&rft.issue=7&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1051-0761&rft.eissn=1939-5582&rft_id=info:doi/10.1002/eap.2417&rft_dat=%3Cjstor_osti_%3E27092222%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582851407&rft_id=info:pmid/&rft_jstor_id=27092222&rfr_iscdi=true