Heteroepitaxy of Dirac semimetal Cd3As2 by metal-organic chemical-vapor deposition

•First growth of Dirac semimetal Cd3As2 by metalorganic chemical vapor deposition.•Films are 5–75 nm thick and consist of epitaxially oriented, coalesced polycrystals.•Well-optimized films exhibit rms surface roughnesses as low as 1.0 nm.•X-ray studies reveal a thin-film crystallographic structure c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2021-10, Vol.572 (C), p.126230, Article 126230
Hauptverfasser: Tait, C.R., Lee, S.R., Deitz, J.I., Rodriguez, M.A., Alliman, D.L., Gunning, B.P., Peake, G.M., Sandoval, A., Valdez, N.R., Sharps, P.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 126230
container_title Journal of crystal growth
container_volume 572
creator Tait, C.R.
Lee, S.R.
Deitz, J.I.
Rodriguez, M.A.
Alliman, D.L.
Gunning, B.P.
Peake, G.M.
Sandoval, A.
Valdez, N.R.
Sharps, P.R.
description •First growth of Dirac semimetal Cd3As2 by metalorganic chemical vapor deposition.•Films are 5–75 nm thick and consist of epitaxially oriented, coalesced polycrystals.•Well-optimized films exhibit rms surface roughnesses as low as 1.0 nm.•X-ray studies reveal a thin-film crystallographic structure consistent with P42/nbc. We present progress on the synthesis of semimetal Cd3As2 by metal–organic chemical-vapor deposition (MOCVD). Specifically, we have optimized the growth conditions needed to obtain technologically useful growth rates and acceptable thin-film microstructures, with our studies evaluating the effects of varying the temperature, pressure, and carrier-gas type for MOCVD of Cd3As2 when performed using dimethylcadmium and tertiarybutylarsine precursors. In the course of the optimization studies, exploratory Cd3As2 growths are attempted on GaSb substrates, strain-relaxed InAs buffer layers grown on GaSb substrates, and InAs substrates. Notably, only the InAs-terminated substrate surfaces yield desirable results. Extensive microstructural studies of Cd3As2 thin films on InAs are performed by using multiple advanced imaging microscopies and x-ray diffraction modalities. The studied films are 5–75 nm in thickness and consist of oriented, coalesced polycrystals with lateral domain widths of 30–80 nm. The most optimized films are smooth and specular, exhibiting a surface roughness as low as 1.0 nm rms. Under cross-sectional imaging, the Cd3As2-InAs heterointerface appears smooth and abrupt at a lower film thickness, ~30 nm, but becomes quite irregular as the average thickness increases to ~55 nm. The films are strain-relaxed with a residual biaxial tensile strain (εxx = +0.0010) that opposes the initially compressive lattice-mismatch strain of Cd3As2 coherent on InAs (εxx = −0.042). Importantly, phase-identification studies find a thin-film crystal structure consistent with the P42/nbc space group, placing MOCVD-grown Cd3As2 among the Dirac semimetals of substantial interest for topological quantum materials studies.
doi_str_mv 10.1016/j.jcrysgro.2021.126230
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1811326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024821002050</els_id><sourcerecordid>2582849279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-75bd9400fa21bf39b1564f375b3ae72084aea603f7deea7e012613f46338b6b93</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMIvoAjOCX4kTnKjKo8iVUJCcLYcZ9M6auNguxX5exwCZy672tXMaGYQuiY4IZjwuzZplR3cxpqEYkoSQjll-ATNSJGzOMOYnqJZmDTGNC3O0YVzLcaBSfAMva3AgzXQay-_hsg00YO2UkUO9noPXu6iZc0WjkbVEP3csbEb2WkVqW2AqPA4yt7YqIbeOO216S7RWSN3Dq5-9xx9PD2-L1fx-vX5ZblYx4px6uM8q-oyxbiRlFQNKyuS8bRh4c0k5BQXqQTJMWvyGkDmgEMuwpqUM1ZUvCrZHN1MusZ5LZzSHtRWma4D5QUpCGGUB9DtBOqt-TyA86I1B9sFX4JmBS3SkuajFJ9QyhrnLDSit3ov7SAIFmPJohV_JYuxZDGVHIj3ExFC0KMGO_qATkGt7WijNvo_iW_CsYf1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582849279</pqid></control><display><type>article</type><title>Heteroepitaxy of Dirac semimetal Cd3As2 by metal-organic chemical-vapor deposition</title><source>Elsevier ScienceDirect Journals</source><creator>Tait, C.R. ; Lee, S.R. ; Deitz, J.I. ; Rodriguez, M.A. ; Alliman, D.L. ; Gunning, B.P. ; Peake, G.M. ; Sandoval, A. ; Valdez, N.R. ; Sharps, P.R.</creator><creatorcontrib>Tait, C.R. ; Lee, S.R. ; Deitz, J.I. ; Rodriguez, M.A. ; Alliman, D.L. ; Gunning, B.P. ; Peake, G.M. ; Sandoval, A. ; Valdez, N.R. ; Sharps, P.R. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>•First growth of Dirac semimetal Cd3As2 by metalorganic chemical vapor deposition.•Films are 5–75 nm thick and consist of epitaxially oriented, coalesced polycrystals.•Well-optimized films exhibit rms surface roughnesses as low as 1.0 nm.•X-ray studies reveal a thin-film crystallographic structure consistent with P42/nbc. We present progress on the synthesis of semimetal Cd3As2 by metal–organic chemical-vapor deposition (MOCVD). Specifically, we have optimized the growth conditions needed to obtain technologically useful growth rates and acceptable thin-film microstructures, with our studies evaluating the effects of varying the temperature, pressure, and carrier-gas type for MOCVD of Cd3As2 when performed using dimethylcadmium and tertiarybutylarsine precursors. In the course of the optimization studies, exploratory Cd3As2 growths are attempted on GaSb substrates, strain-relaxed InAs buffer layers grown on GaSb substrates, and InAs substrates. Notably, only the InAs-terminated substrate surfaces yield desirable results. Extensive microstructural studies of Cd3As2 thin films on InAs are performed by using multiple advanced imaging microscopies and x-ray diffraction modalities. The studied films are 5–75 nm in thickness and consist of oriented, coalesced polycrystals with lateral domain widths of 30–80 nm. The most optimized films are smooth and specular, exhibiting a surface roughness as low as 1.0 nm rms. Under cross-sectional imaging, the Cd3As2-InAs heterointerface appears smooth and abrupt at a lower film thickness, ~30 nm, but becomes quite irregular as the average thickness increases to ~55 nm. The films are strain-relaxed with a residual biaxial tensile strain (εxx = +0.0010) that opposes the initially compressive lattice-mismatch strain of Cd3As2 coherent on InAs (εxx = −0.042). Importantly, phase-identification studies find a thin-film crystal structure consistent with the P42/nbc space group, placing MOCVD-grown Cd3As2 among the Dirac semimetals of substantial interest for topological quantum materials studies.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2021.126230</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Characterization ; A1. High resolution x-ray diffraction ; A3. Metalorganic chemical vapor deposition ; A3. Metalorganic vapor phase epitaxy ; B1. Cadmium compounds ; B2. Semiconducting cadmium compounds ; Buffer layers ; cadmium compounds ; characterization ; Compressive properties ; Crystal structure ; Film thickness ; Gallium antimonides ; high resolution x-ray diffraction ; Indium arsenides ; Metalloids ; Metalorganic chemical vapor deposition ; metalorganic vapor phase epitaxy ; Microstructure ; Optimization ; Organic chemicals ; Organic chemistry ; Polycrystals ; semiconducting cadmium compounds ; Substrates ; Surface roughness ; Tensile strain ; Thin films ; X ray imagery</subject><ispartof>Journal of crystal growth, 2021-10, Vol.572 (C), p.126230, Article 126230</ispartof><rights>2021 National Technology and Engineering Solutions of Sandia, LLC.</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-75bd9400fa21bf39b1564f375b3ae72084aea603f7deea7e012613f46338b6b93</cites><orcidid>0000-0001-7120-9061 ; 0000-0002-9638-1252 ; 0000-0002-9400-5392 ; 0000000171209061 ; 0000000294005392 ; 0000000296381252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024821002050$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1811326$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tait, C.R.</creatorcontrib><creatorcontrib>Lee, S.R.</creatorcontrib><creatorcontrib>Deitz, J.I.</creatorcontrib><creatorcontrib>Rodriguez, M.A.</creatorcontrib><creatorcontrib>Alliman, D.L.</creatorcontrib><creatorcontrib>Gunning, B.P.</creatorcontrib><creatorcontrib>Peake, G.M.</creatorcontrib><creatorcontrib>Sandoval, A.</creatorcontrib><creatorcontrib>Valdez, N.R.</creatorcontrib><creatorcontrib>Sharps, P.R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Heteroepitaxy of Dirac semimetal Cd3As2 by metal-organic chemical-vapor deposition</title><title>Journal of crystal growth</title><description>•First growth of Dirac semimetal Cd3As2 by metalorganic chemical vapor deposition.•Films are 5–75 nm thick and consist of epitaxially oriented, coalesced polycrystals.•Well-optimized films exhibit rms surface roughnesses as low as 1.0 nm.•X-ray studies reveal a thin-film crystallographic structure consistent with P42/nbc. We present progress on the synthesis of semimetal Cd3As2 by metal–organic chemical-vapor deposition (MOCVD). Specifically, we have optimized the growth conditions needed to obtain technologically useful growth rates and acceptable thin-film microstructures, with our studies evaluating the effects of varying the temperature, pressure, and carrier-gas type for MOCVD of Cd3As2 when performed using dimethylcadmium and tertiarybutylarsine precursors. In the course of the optimization studies, exploratory Cd3As2 growths are attempted on GaSb substrates, strain-relaxed InAs buffer layers grown on GaSb substrates, and InAs substrates. Notably, only the InAs-terminated substrate surfaces yield desirable results. Extensive microstructural studies of Cd3As2 thin films on InAs are performed by using multiple advanced imaging microscopies and x-ray diffraction modalities. The studied films are 5–75 nm in thickness and consist of oriented, coalesced polycrystals with lateral domain widths of 30–80 nm. The most optimized films are smooth and specular, exhibiting a surface roughness as low as 1.0 nm rms. Under cross-sectional imaging, the Cd3As2-InAs heterointerface appears smooth and abrupt at a lower film thickness, ~30 nm, but becomes quite irregular as the average thickness increases to ~55 nm. The films are strain-relaxed with a residual biaxial tensile strain (εxx = +0.0010) that opposes the initially compressive lattice-mismatch strain of Cd3As2 coherent on InAs (εxx = −0.042). Importantly, phase-identification studies find a thin-film crystal structure consistent with the P42/nbc space group, placing MOCVD-grown Cd3As2 among the Dirac semimetals of substantial interest for topological quantum materials studies.</description><subject>A1. Characterization</subject><subject>A1. High resolution x-ray diffraction</subject><subject>A3. Metalorganic chemical vapor deposition</subject><subject>A3. Metalorganic vapor phase epitaxy</subject><subject>B1. Cadmium compounds</subject><subject>B2. Semiconducting cadmium compounds</subject><subject>Buffer layers</subject><subject>cadmium compounds</subject><subject>characterization</subject><subject>Compressive properties</subject><subject>Crystal structure</subject><subject>Film thickness</subject><subject>Gallium antimonides</subject><subject>high resolution x-ray diffraction</subject><subject>Indium arsenides</subject><subject>Metalloids</subject><subject>Metalorganic chemical vapor deposition</subject><subject>metalorganic vapor phase epitaxy</subject><subject>Microstructure</subject><subject>Optimization</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Polycrystals</subject><subject>semiconducting cadmium compounds</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Tensile strain</subject><subject>Thin films</subject><subject>X ray imagery</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMIvoAjOCX4kTnKjKo8iVUJCcLYcZ9M6auNguxX5exwCZy672tXMaGYQuiY4IZjwuzZplR3cxpqEYkoSQjll-ATNSJGzOMOYnqJZmDTGNC3O0YVzLcaBSfAMva3AgzXQay-_hsg00YO2UkUO9noPXu6iZc0WjkbVEP3csbEb2WkVqW2AqPA4yt7YqIbeOO216S7RWSN3Dq5-9xx9PD2-L1fx-vX5ZblYx4px6uM8q-oyxbiRlFQNKyuS8bRh4c0k5BQXqQTJMWvyGkDmgEMuwpqUM1ZUvCrZHN1MusZ5LZzSHtRWma4D5QUpCGGUB9DtBOqt-TyA86I1B9sFX4JmBS3SkuajFJ9QyhrnLDSit3ov7SAIFmPJohV_JYuxZDGVHIj3ExFC0KMGO_qATkGt7WijNvo_iW_CsYf1</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Tait, C.R.</creator><creator>Lee, S.R.</creator><creator>Deitz, J.I.</creator><creator>Rodriguez, M.A.</creator><creator>Alliman, D.L.</creator><creator>Gunning, B.P.</creator><creator>Peake, G.M.</creator><creator>Sandoval, A.</creator><creator>Valdez, N.R.</creator><creator>Sharps, P.R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7120-9061</orcidid><orcidid>https://orcid.org/0000-0002-9638-1252</orcidid><orcidid>https://orcid.org/0000-0002-9400-5392</orcidid><orcidid>https://orcid.org/0000000171209061</orcidid><orcidid>https://orcid.org/0000000294005392</orcidid><orcidid>https://orcid.org/0000000296381252</orcidid></search><sort><creationdate>20211015</creationdate><title>Heteroepitaxy of Dirac semimetal Cd3As2 by metal-organic chemical-vapor deposition</title><author>Tait, C.R. ; Lee, S.R. ; Deitz, J.I. ; Rodriguez, M.A. ; Alliman, D.L. ; Gunning, B.P. ; Peake, G.M. ; Sandoval, A. ; Valdez, N.R. ; Sharps, P.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-75bd9400fa21bf39b1564f375b3ae72084aea603f7deea7e012613f46338b6b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A1. Characterization</topic><topic>A1. High resolution x-ray diffraction</topic><topic>A3. Metalorganic chemical vapor deposition</topic><topic>A3. Metalorganic vapor phase epitaxy</topic><topic>B1. Cadmium compounds</topic><topic>B2. Semiconducting cadmium compounds</topic><topic>Buffer layers</topic><topic>cadmium compounds</topic><topic>characterization</topic><topic>Compressive properties</topic><topic>Crystal structure</topic><topic>Film thickness</topic><topic>Gallium antimonides</topic><topic>high resolution x-ray diffraction</topic><topic>Indium arsenides</topic><topic>Metalloids</topic><topic>Metalorganic chemical vapor deposition</topic><topic>metalorganic vapor phase epitaxy</topic><topic>Microstructure</topic><topic>Optimization</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Polycrystals</topic><topic>semiconducting cadmium compounds</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Tensile strain</topic><topic>Thin films</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tait, C.R.</creatorcontrib><creatorcontrib>Lee, S.R.</creatorcontrib><creatorcontrib>Deitz, J.I.</creatorcontrib><creatorcontrib>Rodriguez, M.A.</creatorcontrib><creatorcontrib>Alliman, D.L.</creatorcontrib><creatorcontrib>Gunning, B.P.</creatorcontrib><creatorcontrib>Peake, G.M.</creatorcontrib><creatorcontrib>Sandoval, A.</creatorcontrib><creatorcontrib>Valdez, N.R.</creatorcontrib><creatorcontrib>Sharps, P.R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tait, C.R.</au><au>Lee, S.R.</au><au>Deitz, J.I.</au><au>Rodriguez, M.A.</au><au>Alliman, D.L.</au><au>Gunning, B.P.</au><au>Peake, G.M.</au><au>Sandoval, A.</au><au>Valdez, N.R.</au><au>Sharps, P.R.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroepitaxy of Dirac semimetal Cd3As2 by metal-organic chemical-vapor deposition</atitle><jtitle>Journal of crystal growth</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>572</volume><issue>C</issue><spage>126230</spage><pages>126230-</pages><artnum>126230</artnum><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•First growth of Dirac semimetal Cd3As2 by metalorganic chemical vapor deposition.•Films are 5–75 nm thick and consist of epitaxially oriented, coalesced polycrystals.•Well-optimized films exhibit rms surface roughnesses as low as 1.0 nm.•X-ray studies reveal a thin-film crystallographic structure consistent with P42/nbc. We present progress on the synthesis of semimetal Cd3As2 by metal–organic chemical-vapor deposition (MOCVD). Specifically, we have optimized the growth conditions needed to obtain technologically useful growth rates and acceptable thin-film microstructures, with our studies evaluating the effects of varying the temperature, pressure, and carrier-gas type for MOCVD of Cd3As2 when performed using dimethylcadmium and tertiarybutylarsine precursors. In the course of the optimization studies, exploratory Cd3As2 growths are attempted on GaSb substrates, strain-relaxed InAs buffer layers grown on GaSb substrates, and InAs substrates. Notably, only the InAs-terminated substrate surfaces yield desirable results. Extensive microstructural studies of Cd3As2 thin films on InAs are performed by using multiple advanced imaging microscopies and x-ray diffraction modalities. The studied films are 5–75 nm in thickness and consist of oriented, coalesced polycrystals with lateral domain widths of 30–80 nm. The most optimized films are smooth and specular, exhibiting a surface roughness as low as 1.0 nm rms. Under cross-sectional imaging, the Cd3As2-InAs heterointerface appears smooth and abrupt at a lower film thickness, ~30 nm, but becomes quite irregular as the average thickness increases to ~55 nm. The films are strain-relaxed with a residual biaxial tensile strain (εxx = +0.0010) that opposes the initially compressive lattice-mismatch strain of Cd3As2 coherent on InAs (εxx = −0.042). Importantly, phase-identification studies find a thin-film crystal structure consistent with the P42/nbc space group, placing MOCVD-grown Cd3As2 among the Dirac semimetals of substantial interest for topological quantum materials studies.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2021.126230</doi><orcidid>https://orcid.org/0000-0001-7120-9061</orcidid><orcidid>https://orcid.org/0000-0002-9638-1252</orcidid><orcidid>https://orcid.org/0000-0002-9400-5392</orcidid><orcidid>https://orcid.org/0000000171209061</orcidid><orcidid>https://orcid.org/0000000294005392</orcidid><orcidid>https://orcid.org/0000000296381252</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2021-10, Vol.572 (C), p.126230, Article 126230
issn 0022-0248
1873-5002
language eng
recordid cdi_osti_scitechconnect_1811326
source Elsevier ScienceDirect Journals
subjects A1. Characterization
A1. High resolution x-ray diffraction
A3. Metalorganic chemical vapor deposition
A3. Metalorganic vapor phase epitaxy
B1. Cadmium compounds
B2. Semiconducting cadmium compounds
Buffer layers
cadmium compounds
characterization
Compressive properties
Crystal structure
Film thickness
Gallium antimonides
high resolution x-ray diffraction
Indium arsenides
Metalloids
Metalorganic chemical vapor deposition
metalorganic vapor phase epitaxy
Microstructure
Optimization
Organic chemicals
Organic chemistry
Polycrystals
semiconducting cadmium compounds
Substrates
Surface roughness
Tensile strain
Thin films
X ray imagery
title Heteroepitaxy of Dirac semimetal Cd3As2 by metal-organic chemical-vapor deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroepitaxy%20of%20Dirac%20semimetal%20Cd3As2%20by%20metal-organic%20chemical-vapor%20deposition&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Tait,%20C.R.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-10-15&rft.volume=572&rft.issue=C&rft.spage=126230&rft.pages=126230-&rft.artnum=126230&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2021.126230&rft_dat=%3Cproquest_osti_%3E2582849279%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582849279&rft_id=info:pmid/&rft_els_id=S0022024821002050&rfr_iscdi=true