A field–particle correlation analysis of a perpendicular magnetized collisionless shock
Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlat...
Gespeichert in:
Veröffentlicht in: | Journal of plasma physics 2021-06, Vol.87 (3), Article 905870316 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of plasma physics |
container_volume | 87 |
creator | Juno, James Howes, Gregory G. TenBarge, Jason M. Wilson, Lynn B. Spitkovsky, Anatoly Caprioli, Damiano Klein, Kristopher G. Hakim, Ammar |
description | Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks. |
doi_str_mv | 10.1017/S0022377821000623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1810625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377821000623</cupid><sourcerecordid>2547611141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a7366943dc9943ea982ef4957868b9fd4f88197400b8af23748255e1250256633</originalsourceid><addsrcrecordid>eNp1kL1KBDEUhYMouP48gGAxaD2aZPI3pYh_sGChFlYhm7mzRrOTMckWWvkOvqFPYpYVLMTm3uJ851zuQeiA4BOCiTy9w5jSRkpFCcZY0GYDTQgTbS0VlptospLrlb6NdlJ6LkyDqZygx7Oqd-C7r4_P0cTsrIfKhhjBm-zCUJnB-LfkUhX6ylQjxBGGztmlN7FamPkA2b1DVyzeu1QMHlKq0lOwL3toqzc-wf7P3kUPlxf359f19Pbq5vxsWlsmWa6NbIRoWdPZtkwwraLQs5ZLJdSs7TvWK0VayTCeKdOXF5minAOhHFMuRNPsoqN1bkjZ6WRdBvtkwzCAzZooUsrgBTpeQ2MMr0tIWT-HZSy_JU05k4IQwkihyJqyMaQUoddjdAsT3zTBelWz_lNz8RyuPYNJRg85lkS8UgkXXBa5-Yk0i1l03Rx-L_8f-g2n5Yap</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547611141</pqid></control><display><type>article</type><title>A field–particle correlation analysis of a perpendicular magnetized collisionless shock</title><source>NASA Technical Reports Server</source><source>Cambridge Journals</source><creator>Juno, James ; Howes, Gregory G. ; TenBarge, Jason M. ; Wilson, Lynn B. ; Spitkovsky, Anatoly ; Caprioli, Damiano ; Klein, Kristopher G. ; Hakim, Ammar</creator><creatorcontrib>Juno, James ; Howes, Gregory G. ; TenBarge, Jason M. ; Wilson, Lynn B. ; Spitkovsky, Anatoly ; Caprioli, Damiano ; Klein, Kristopher G. ; Hakim, Ammar ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377821000623</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Acceleration ; astrophysical plasmas ; Correlation analysis ; Distribution functions ; Electric fields ; Electromagnetic fields ; Electromagnetism ; Energy ; Energy transfer ; Heat exchange ; Plasma ; Plasma Physics ; plasma simulation ; Radiation ; Signatures ; Simulation ; space plasma physics ; Spacecraft ; Velocity ; Vlasov equations</subject><ispartof>Journal of plasma physics, 2021-06, Vol.87 (3), Article 905870316</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press</rights><rights>Copyright Determination: GOV_PERMITTED</rights><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a7366943dc9943ea982ef4957868b9fd4f88197400b8af23748255e1250256633</citedby><cites>FETCH-LOGICAL-c474t-a7366943dc9943ea982ef4957868b9fd4f88197400b8af23748255e1250256633</cites><orcidid>0000-0001-6835-273X ; 0000-0003-0143-951X ; 0000-0001-6603-8595 ; 0000-0002-4313-1970 ; 0000-0003-1749-2665 ; 0000-0003-0939-8775 ; 0000-0001-6038-1923 ; 0000000160381923 ; 0000000317492665 ; 0000000309398775 ; 0000000166038595 ; 000000016835273X ; 000000030143951X ; 0000000243131970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377821000623/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,314,776,780,796,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1810625$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Juno, James</creatorcontrib><creatorcontrib>Howes, Gregory G.</creatorcontrib><creatorcontrib>TenBarge, Jason M.</creatorcontrib><creatorcontrib>Wilson, Lynn B.</creatorcontrib><creatorcontrib>Spitkovsky, Anatoly</creatorcontrib><creatorcontrib>Caprioli, Damiano</creatorcontrib><creatorcontrib>Klein, Kristopher G.</creatorcontrib><creatorcontrib>Hakim, Ammar</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>A field–particle correlation analysis of a perpendicular magnetized collisionless shock</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Acceleration</subject><subject>astrophysical plasmas</subject><subject>Correlation analysis</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Heat exchange</subject><subject>Plasma</subject><subject>Plasma Physics</subject><subject>plasma simulation</subject><subject>Radiation</subject><subject>Signatures</subject><subject>Simulation</subject><subject>space plasma physics</subject><subject>Spacecraft</subject><subject>Velocity</subject><subject>Vlasov equations</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>CYI</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kL1KBDEUhYMouP48gGAxaD2aZPI3pYh_sGChFlYhm7mzRrOTMckWWvkOvqFPYpYVLMTm3uJ851zuQeiA4BOCiTy9w5jSRkpFCcZY0GYDTQgTbS0VlptospLrlb6NdlJ6LkyDqZygx7Oqd-C7r4_P0cTsrIfKhhjBm-zCUJnB-LfkUhX6ylQjxBGGztmlN7FamPkA2b1DVyzeu1QMHlKq0lOwL3toqzc-wf7P3kUPlxf359f19Pbq5vxsWlsmWa6NbIRoWdPZtkwwraLQs5ZLJdSs7TvWK0VayTCeKdOXF5minAOhHFMuRNPsoqN1bkjZ6WRdBvtkwzCAzZooUsrgBTpeQ2MMr0tIWT-HZSy_JU05k4IQwkihyJqyMaQUoddjdAsT3zTBelWz_lNz8RyuPYNJRg85lkS8UgkXXBa5-Yk0i1l03Rx-L_8f-g2n5Yap</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Juno, James</creator><creator>Howes, Gregory G.</creator><creator>TenBarge, Jason M.</creator><creator>Wilson, Lynn B.</creator><creator>Spitkovsky, Anatoly</creator><creator>Caprioli, Damiano</creator><creator>Klein, Kristopher G.</creator><creator>Hakim, Ammar</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6835-273X</orcidid><orcidid>https://orcid.org/0000-0003-0143-951X</orcidid><orcidid>https://orcid.org/0000-0001-6603-8595</orcidid><orcidid>https://orcid.org/0000-0002-4313-1970</orcidid><orcidid>https://orcid.org/0000-0003-1749-2665</orcidid><orcidid>https://orcid.org/0000-0003-0939-8775</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000000160381923</orcidid><orcidid>https://orcid.org/0000000317492665</orcidid><orcidid>https://orcid.org/0000000309398775</orcidid><orcidid>https://orcid.org/0000000166038595</orcidid><orcidid>https://orcid.org/000000016835273X</orcidid><orcidid>https://orcid.org/000000030143951X</orcidid><orcidid>https://orcid.org/0000000243131970</orcidid></search><sort><creationdate>20210601</creationdate><title>A field–particle correlation analysis of a perpendicular magnetized collisionless shock</title><author>Juno, James ; Howes, Gregory G. ; TenBarge, Jason M. ; Wilson, Lynn B. ; Spitkovsky, Anatoly ; Caprioli, Damiano ; Klein, Kristopher G. ; Hakim, Ammar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a7366943dc9943ea982ef4957868b9fd4f88197400b8af23748255e1250256633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Acceleration</topic><topic>astrophysical plasmas</topic><topic>Correlation analysis</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Heat exchange</topic><topic>Plasma</topic><topic>Plasma Physics</topic><topic>plasma simulation</topic><topic>Radiation</topic><topic>Signatures</topic><topic>Simulation</topic><topic>space plasma physics</topic><topic>Spacecraft</topic><topic>Velocity</topic><topic>Vlasov equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juno, James</creatorcontrib><creatorcontrib>Howes, Gregory G.</creatorcontrib><creatorcontrib>TenBarge, Jason M.</creatorcontrib><creatorcontrib>Wilson, Lynn B.</creatorcontrib><creatorcontrib>Spitkovsky, Anatoly</creatorcontrib><creatorcontrib>Caprioli, Damiano</creatorcontrib><creatorcontrib>Klein, Kristopher G.</creatorcontrib><creatorcontrib>Hakim, Ammar</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juno, James</au><au>Howes, Gregory G.</au><au>TenBarge, Jason M.</au><au>Wilson, Lynn B.</au><au>Spitkovsky, Anatoly</au><au>Caprioli, Damiano</au><au>Klein, Kristopher G.</au><au>Hakim, Ammar</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A field–particle correlation analysis of a perpendicular magnetized collisionless shock</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>87</volume><issue>3</issue><artnum>905870316</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377821000623</doi><tpages>49</tpages><orcidid>https://orcid.org/0000-0001-6835-273X</orcidid><orcidid>https://orcid.org/0000-0003-0143-951X</orcidid><orcidid>https://orcid.org/0000-0001-6603-8595</orcidid><orcidid>https://orcid.org/0000-0002-4313-1970</orcidid><orcidid>https://orcid.org/0000-0003-1749-2665</orcidid><orcidid>https://orcid.org/0000-0003-0939-8775</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000000160381923</orcidid><orcidid>https://orcid.org/0000000317492665</orcidid><orcidid>https://orcid.org/0000000309398775</orcidid><orcidid>https://orcid.org/0000000166038595</orcidid><orcidid>https://orcid.org/000000016835273X</orcidid><orcidid>https://orcid.org/000000030143951X</orcidid><orcidid>https://orcid.org/0000000243131970</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3778 |
ispartof | Journal of plasma physics, 2021-06, Vol.87 (3), Article 905870316 |
issn | 0022-3778 1469-7807 |
language | eng |
recordid | cdi_osti_scitechconnect_1810625 |
source | NASA Technical Reports Server; Cambridge Journals |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Acceleration astrophysical plasmas Correlation analysis Distribution functions Electric fields Electromagnetic fields Electromagnetism Energy Energy transfer Heat exchange Plasma Plasma Physics plasma simulation Radiation Signatures Simulation space plasma physics Spacecraft Velocity Vlasov equations |
title | A field–particle correlation analysis of a perpendicular magnetized collisionless shock |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20field%E2%80%93particle%20correlation%20analysis%20of%20a%20perpendicular%20magnetized%20collisionless%20shock&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Juno,%20James&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2021-06-01&rft.volume=87&rft.issue=3&rft.artnum=905870316&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377821000623&rft_dat=%3Cproquest_osti_%3E2547611141%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547611141&rft_id=info:pmid/&rft_cupid=10_1017_S0022377821000623&rfr_iscdi=true |