A field–particle correlation analysis of a perpendicular magnetized collisionless shock

Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2021-06, Vol.87 (3), Article 905870316
Hauptverfasser: Juno, James, Howes, Gregory G., TenBarge, Jason M., Wilson, Lynn B., Spitkovsky, Anatoly, Caprioli, Damiano, Klein, Kristopher G., Hakim, Ammar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of plasma physics
container_volume 87
creator Juno, James
Howes, Gregory G.
TenBarge, Jason M.
Wilson, Lynn B.
Spitkovsky, Anatoly
Caprioli, Damiano
Klein, Kristopher G.
Hakim, Ammar
description Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks.
doi_str_mv 10.1017/S0022377821000623
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1810625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377821000623</cupid><sourcerecordid>2547611141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a7366943dc9943ea982ef4957868b9fd4f88197400b8af23748255e1250256633</originalsourceid><addsrcrecordid>eNp1kL1KBDEUhYMouP48gGAxaD2aZPI3pYh_sGChFlYhm7mzRrOTMckWWvkOvqFPYpYVLMTm3uJ851zuQeiA4BOCiTy9w5jSRkpFCcZY0GYDTQgTbS0VlptospLrlb6NdlJ6LkyDqZygx7Oqd-C7r4_P0cTsrIfKhhjBm-zCUJnB-LfkUhX6ylQjxBGGztmlN7FamPkA2b1DVyzeu1QMHlKq0lOwL3toqzc-wf7P3kUPlxf359f19Pbq5vxsWlsmWa6NbIRoWdPZtkwwraLQs5ZLJdSs7TvWK0VayTCeKdOXF5minAOhHFMuRNPsoqN1bkjZ6WRdBvtkwzCAzZooUsrgBTpeQ2MMr0tIWT-HZSy_JU05k4IQwkihyJqyMaQUoddjdAsT3zTBelWz_lNz8RyuPYNJRg85lkS8UgkXXBa5-Yk0i1l03Rx-L_8f-g2n5Yap</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547611141</pqid></control><display><type>article</type><title>A field–particle correlation analysis of a perpendicular magnetized collisionless shock</title><source>NASA Technical Reports Server</source><source>Cambridge Journals</source><creator>Juno, James ; Howes, Gregory G. ; TenBarge, Jason M. ; Wilson, Lynn B. ; Spitkovsky, Anatoly ; Caprioli, Damiano ; Klein, Kristopher G. ; Hakim, Ammar</creator><creatorcontrib>Juno, James ; Howes, Gregory G. ; TenBarge, Jason M. ; Wilson, Lynn B. ; Spitkovsky, Anatoly ; Caprioli, Damiano ; Klein, Kristopher G. ; Hakim, Ammar ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377821000623</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Acceleration ; astrophysical plasmas ; Correlation analysis ; Distribution functions ; Electric fields ; Electromagnetic fields ; Electromagnetism ; Energy ; Energy transfer ; Heat exchange ; Plasma ; Plasma Physics ; plasma simulation ; Radiation ; Signatures ; Simulation ; space plasma physics ; Spacecraft ; Velocity ; Vlasov equations</subject><ispartof>Journal of plasma physics, 2021-06, Vol.87 (3), Article 905870316</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press</rights><rights>Copyright Determination: GOV_PERMITTED</rights><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a7366943dc9943ea982ef4957868b9fd4f88197400b8af23748255e1250256633</citedby><cites>FETCH-LOGICAL-c474t-a7366943dc9943ea982ef4957868b9fd4f88197400b8af23748255e1250256633</cites><orcidid>0000-0001-6835-273X ; 0000-0003-0143-951X ; 0000-0001-6603-8595 ; 0000-0002-4313-1970 ; 0000-0003-1749-2665 ; 0000-0003-0939-8775 ; 0000-0001-6038-1923 ; 0000000160381923 ; 0000000317492665 ; 0000000309398775 ; 0000000166038595 ; 000000016835273X ; 000000030143951X ; 0000000243131970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377821000623/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,314,776,780,796,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1810625$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Juno, James</creatorcontrib><creatorcontrib>Howes, Gregory G.</creatorcontrib><creatorcontrib>TenBarge, Jason M.</creatorcontrib><creatorcontrib>Wilson, Lynn B.</creatorcontrib><creatorcontrib>Spitkovsky, Anatoly</creatorcontrib><creatorcontrib>Caprioli, Damiano</creatorcontrib><creatorcontrib>Klein, Kristopher G.</creatorcontrib><creatorcontrib>Hakim, Ammar</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>A field–particle correlation analysis of a perpendicular magnetized collisionless shock</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Acceleration</subject><subject>astrophysical plasmas</subject><subject>Correlation analysis</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Heat exchange</subject><subject>Plasma</subject><subject>Plasma Physics</subject><subject>plasma simulation</subject><subject>Radiation</subject><subject>Signatures</subject><subject>Simulation</subject><subject>space plasma physics</subject><subject>Spacecraft</subject><subject>Velocity</subject><subject>Vlasov equations</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>CYI</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kL1KBDEUhYMouP48gGAxaD2aZPI3pYh_sGChFlYhm7mzRrOTMckWWvkOvqFPYpYVLMTm3uJ851zuQeiA4BOCiTy9w5jSRkpFCcZY0GYDTQgTbS0VlptospLrlb6NdlJ6LkyDqZygx7Oqd-C7r4_P0cTsrIfKhhjBm-zCUJnB-LfkUhX6ylQjxBGGztmlN7FamPkA2b1DVyzeu1QMHlKq0lOwL3toqzc-wf7P3kUPlxf359f19Pbq5vxsWlsmWa6NbIRoWdPZtkwwraLQs5ZLJdSs7TvWK0VayTCeKdOXF5minAOhHFMuRNPsoqN1bkjZ6WRdBvtkwzCAzZooUsrgBTpeQ2MMr0tIWT-HZSy_JU05k4IQwkihyJqyMaQUoddjdAsT3zTBelWz_lNz8RyuPYNJRg85lkS8UgkXXBa5-Yk0i1l03Rx-L_8f-g2n5Yap</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Juno, James</creator><creator>Howes, Gregory G.</creator><creator>TenBarge, Jason M.</creator><creator>Wilson, Lynn B.</creator><creator>Spitkovsky, Anatoly</creator><creator>Caprioli, Damiano</creator><creator>Klein, Kristopher G.</creator><creator>Hakim, Ammar</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6835-273X</orcidid><orcidid>https://orcid.org/0000-0003-0143-951X</orcidid><orcidid>https://orcid.org/0000-0001-6603-8595</orcidid><orcidid>https://orcid.org/0000-0002-4313-1970</orcidid><orcidid>https://orcid.org/0000-0003-1749-2665</orcidid><orcidid>https://orcid.org/0000-0003-0939-8775</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000000160381923</orcidid><orcidid>https://orcid.org/0000000317492665</orcidid><orcidid>https://orcid.org/0000000309398775</orcidid><orcidid>https://orcid.org/0000000166038595</orcidid><orcidid>https://orcid.org/000000016835273X</orcidid><orcidid>https://orcid.org/000000030143951X</orcidid><orcidid>https://orcid.org/0000000243131970</orcidid></search><sort><creationdate>20210601</creationdate><title>A field–particle correlation analysis of a perpendicular magnetized collisionless shock</title><author>Juno, James ; Howes, Gregory G. ; TenBarge, Jason M. ; Wilson, Lynn B. ; Spitkovsky, Anatoly ; Caprioli, Damiano ; Klein, Kristopher G. ; Hakim, Ammar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a7366943dc9943ea982ef4957868b9fd4f88197400b8af23748255e1250256633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Acceleration</topic><topic>astrophysical plasmas</topic><topic>Correlation analysis</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Heat exchange</topic><topic>Plasma</topic><topic>Plasma Physics</topic><topic>plasma simulation</topic><topic>Radiation</topic><topic>Signatures</topic><topic>Simulation</topic><topic>space plasma physics</topic><topic>Spacecraft</topic><topic>Velocity</topic><topic>Vlasov equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juno, James</creatorcontrib><creatorcontrib>Howes, Gregory G.</creatorcontrib><creatorcontrib>TenBarge, Jason M.</creatorcontrib><creatorcontrib>Wilson, Lynn B.</creatorcontrib><creatorcontrib>Spitkovsky, Anatoly</creatorcontrib><creatorcontrib>Caprioli, Damiano</creatorcontrib><creatorcontrib>Klein, Kristopher G.</creatorcontrib><creatorcontrib>Hakim, Ammar</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juno, James</au><au>Howes, Gregory G.</au><au>TenBarge, Jason M.</au><au>Wilson, Lynn B.</au><au>Spitkovsky, Anatoly</au><au>Caprioli, Damiano</au><au>Klein, Kristopher G.</au><au>Hakim, Ammar</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A field–particle correlation analysis of a perpendicular magnetized collisionless shock</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>87</volume><issue>3</issue><artnum>905870316</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377821000623</doi><tpages>49</tpages><orcidid>https://orcid.org/0000-0001-6835-273X</orcidid><orcidid>https://orcid.org/0000-0003-0143-951X</orcidid><orcidid>https://orcid.org/0000-0001-6603-8595</orcidid><orcidid>https://orcid.org/0000-0002-4313-1970</orcidid><orcidid>https://orcid.org/0000-0003-1749-2665</orcidid><orcidid>https://orcid.org/0000-0003-0939-8775</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000000160381923</orcidid><orcidid>https://orcid.org/0000000317492665</orcidid><orcidid>https://orcid.org/0000000309398775</orcidid><orcidid>https://orcid.org/0000000166038595</orcidid><orcidid>https://orcid.org/000000016835273X</orcidid><orcidid>https://orcid.org/000000030143951X</orcidid><orcidid>https://orcid.org/0000000243131970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2021-06, Vol.87 (3), Article 905870316
issn 0022-3778
1469-7807
language eng
recordid cdi_osti_scitechconnect_1810625
source NASA Technical Reports Server; Cambridge Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Acceleration
astrophysical plasmas
Correlation analysis
Distribution functions
Electric fields
Electromagnetic fields
Electromagnetism
Energy
Energy transfer
Heat exchange
Plasma
Plasma Physics
plasma simulation
Radiation
Signatures
Simulation
space plasma physics
Spacecraft
Velocity
Vlasov equations
title A field–particle correlation analysis of a perpendicular magnetized collisionless shock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20field%E2%80%93particle%20correlation%20analysis%20of%20a%20perpendicular%20magnetized%20collisionless%20shock&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Juno,%20James&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2021-06-01&rft.volume=87&rft.issue=3&rft.artnum=905870316&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377821000623&rft_dat=%3Cproquest_osti_%3E2547611141%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547611141&rft_id=info:pmid/&rft_cupid=10_1017_S0022377821000623&rfr_iscdi=true