Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices

Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-05, Vol.129 (18)
Hauptverfasser: Carrasco, Rigo A., Morath, Christian P., Grant, Perry C., Ariyawansa, Gamini, Stephenson, Chad A., Kadlec, Clark N., Hawkins, Samuel D., Klem, John F., Shaner, Eric A., Steenbergen, Elizabeth H., Schaefer, Stephen T., Johnson, Shane R., Webster, Preston T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Journal of applied physics
container_volume 129
creator Carrasco, Rigo A.
Morath, Christian P.
Grant, Perry C.
Ariyawansa, Gamini
Stephenson, Chad A.
Kadlec, Clark N.
Hawkins, Samuel D.
Klem, John F.
Shaner, Eric A.
Steenbergen, Elizabeth H.
Schaefer, Stephen T.
Johnson, Shane R.
Webster, Preston T.
description Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport properties. Time-resolved photoluminescence measurements of InGaAs/InAsSb superlattice characterization- and doped device structures are reported from 77 to 300 K and compared to InAs/InAsSb. The low-injection photoluminescence decay yields the minority carrier lifetime, which is analyzed with a recombination rate model, enabling the determination of the temperature-dependent Shockley–Read–Hall, radiative, and Auger recombination lifetimes and extraction of defect energy levels and capture cross section defect concentration products. The Shockley–Read–Hall-limited lifetime of undoped InGaAs/InAsSb is marginally reduced from 2.3 to 1.4 μs due to the inclusion of Ga; however, given that Ga improves the vertical hole mobility by a factor of >10×, a diffusion-limited InGaAs/InAsSb superlattice nBn could expect a lower bound of 2.5× improvement in diffusion length with significant impact on photodetector quantum efficiency and radiation hardness. At temperatures below 120 K, the doped device structures are Shockley–Read–Hall limited at 0.5 μs, which shows promise for detector applications.
doi_str_mv 10.1063/5.0047178
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1810399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525151864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-fe761bb9ebae75af27e9c2ef988d9dc57e5bca0495286be04ffd540bab742c653</originalsourceid><addsrcrecordid>eNp90MFqGzEQBmBRGqib5NA3EMkpgY2l3dVKOhqTuIZAoUnOQtKOGjlryZFkF799N93QHgo9zWE-_mF-hL5QckNJ18zZDSEtp1x8QDNKhKw4Y-QjmhFS00pILj-hzzlvCKFUNHKGXr6DjVvjgy4-Bpx0AayDHo7ZZ-wDHmL4gbc-xOTLEVudkoeEB--g-C2Mm776qQ8wUpd0gh6vw0ov8nwdFvnB4LzfQRp0Kd5CPkMnTg8Zzt_nKXq6u31cfq3uv63Wy8V9ZRshS-WAd9QYCUYDZ9rVHKStwUkhetlbxoEZq0krWS06A6R1rmctMdrwtrYda07RxZQbc_EqW1_APtsYAtiiqKCkkXJElxPapfi6h1zUJu7T-HlWNasZZVR07aiuJmVTzDmBU7vktzodFSXqrXDF1Hvho72e7NvF33X-wYeY_kK1693_8L_JvwAJ1ZBP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525151864</pqid></control><display><type>article</type><title>Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Carrasco, Rigo A. ; Morath, Christian P. ; Grant, Perry C. ; Ariyawansa, Gamini ; Stephenson, Chad A. ; Kadlec, Clark N. ; Hawkins, Samuel D. ; Klem, John F. ; Shaner, Eric A. ; Steenbergen, Elizabeth H. ; Schaefer, Stephen T. ; Johnson, Shane R. ; Webster, Preston T.</creator><creatorcontrib>Carrasco, Rigo A. ; Morath, Christian P. ; Grant, Perry C. ; Ariyawansa, Gamini ; Stephenson, Chad A. ; Kadlec, Clark N. ; Hawkins, Samuel D. ; Klem, John F. ; Shaner, Eric A. ; Steenbergen, Elizabeth H. ; Schaefer, Stephen T. ; Johnson, Shane R. ; Webster, Preston T. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport properties. Time-resolved photoluminescence measurements of InGaAs/InAsSb superlattice characterization- and doped device structures are reported from 77 to 300 K and compared to InAs/InAsSb. The low-injection photoluminescence decay yields the minority carrier lifetime, which is analyzed with a recombination rate model, enabling the determination of the temperature-dependent Shockley–Read–Hall, radiative, and Auger recombination lifetimes and extraction of defect energy levels and capture cross section defect concentration products. The Shockley–Read–Hall-limited lifetime of undoped InGaAs/InAsSb is marginally reduced from 2.3 to 1.4 μs due to the inclusion of Ga; however, given that Ga improves the vertical hole mobility by a factor of &gt;10×, a diffusion-limited InGaAs/InAsSb superlattice nBn could expect a lower bound of 2.5× improvement in diffusion length with significant impact on photodetector quantum efficiency and radiation hardness. At temperatures below 120 K, the doped device structures are Shockley–Read–Hall limited at 0.5 μs, which shows promise for detector applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0047178</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption cross sections ; Applied physics ; ATOMIC AND MOLECULAR PHYSICS ; Augers ; Carrier lifetime ; Design optimization ; Diffusion length ; Energy levels ; Hole mobility ; Indium arsenides ; Indium gallium arsenides ; Infrared analysis ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Lifetime ; Lower bounds ; Minority carriers ; Photoluminescence ; Quantum efficiency ; Superlattices ; Temperature dependence ; Transport properties</subject><ispartof>Journal of applied physics, 2021-05, Vol.129 (18)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-fe761bb9ebae75af27e9c2ef988d9dc57e5bca0495286be04ffd540bab742c653</citedby><cites>FETCH-LOGICAL-c389t-fe761bb9ebae75af27e9c2ef988d9dc57e5bca0495286be04ffd540bab742c653</cites><orcidid>0000-0002-0598-5780 ; 0000-0002-8634-1556 ; 0000-0001-5838-9301 ; 0000-0002-5908-3803 ; 0000-0002-2148-015X ; 0000-0003-2078-3244 ; 0000000158389301 ; 0000000320783244 ; 0000000205985780 ; 0000000286341556 ; 0000000259083803 ; 000000022148015X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0047178$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1810399$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrasco, Rigo A.</creatorcontrib><creatorcontrib>Morath, Christian P.</creatorcontrib><creatorcontrib>Grant, Perry C.</creatorcontrib><creatorcontrib>Ariyawansa, Gamini</creatorcontrib><creatorcontrib>Stephenson, Chad A.</creatorcontrib><creatorcontrib>Kadlec, Clark N.</creatorcontrib><creatorcontrib>Hawkins, Samuel D.</creatorcontrib><creatorcontrib>Klem, John F.</creatorcontrib><creatorcontrib>Shaner, Eric A.</creatorcontrib><creatorcontrib>Steenbergen, Elizabeth H.</creatorcontrib><creatorcontrib>Schaefer, Stephen T.</creatorcontrib><creatorcontrib>Johnson, Shane R.</creatorcontrib><creatorcontrib>Webster, Preston T.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices</title><title>Journal of applied physics</title><description>Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport properties. Time-resolved photoluminescence measurements of InGaAs/InAsSb superlattice characterization- and doped device structures are reported from 77 to 300 K and compared to InAs/InAsSb. The low-injection photoluminescence decay yields the minority carrier lifetime, which is analyzed with a recombination rate model, enabling the determination of the temperature-dependent Shockley–Read–Hall, radiative, and Auger recombination lifetimes and extraction of defect energy levels and capture cross section defect concentration products. The Shockley–Read–Hall-limited lifetime of undoped InGaAs/InAsSb is marginally reduced from 2.3 to 1.4 μs due to the inclusion of Ga; however, given that Ga improves the vertical hole mobility by a factor of &gt;10×, a diffusion-limited InGaAs/InAsSb superlattice nBn could expect a lower bound of 2.5× improvement in diffusion length with significant impact on photodetector quantum efficiency and radiation hardness. At temperatures below 120 K, the doped device structures are Shockley–Read–Hall limited at 0.5 μs, which shows promise for detector applications.</description><subject>Absorption cross sections</subject><subject>Applied physics</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Augers</subject><subject>Carrier lifetime</subject><subject>Design optimization</subject><subject>Diffusion length</subject><subject>Energy levels</subject><subject>Hole mobility</subject><subject>Indium arsenides</subject><subject>Indium gallium arsenides</subject><subject>Infrared analysis</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Lifetime</subject><subject>Lower bounds</subject><subject>Minority carriers</subject><subject>Photoluminescence</subject><subject>Quantum efficiency</subject><subject>Superlattices</subject><subject>Temperature dependence</subject><subject>Transport properties</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MFqGzEQBmBRGqib5NA3EMkpgY2l3dVKOhqTuIZAoUnOQtKOGjlryZFkF799N93QHgo9zWE-_mF-hL5QckNJ18zZDSEtp1x8QDNKhKw4Y-QjmhFS00pILj-hzzlvCKFUNHKGXr6DjVvjgy4-Bpx0AayDHo7ZZ-wDHmL4gbc-xOTLEVudkoeEB--g-C2Mm776qQ8wUpd0gh6vw0ov8nwdFvnB4LzfQRp0Kd5CPkMnTg8Zzt_nKXq6u31cfq3uv63Wy8V9ZRshS-WAd9QYCUYDZ9rVHKStwUkhetlbxoEZq0krWS06A6R1rmctMdrwtrYda07RxZQbc_EqW1_APtsYAtiiqKCkkXJElxPapfi6h1zUJu7T-HlWNasZZVR07aiuJmVTzDmBU7vktzodFSXqrXDF1Hvho72e7NvF33X-wYeY_kK1693_8L_JvwAJ1ZBP</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>Carrasco, Rigo A.</creator><creator>Morath, Christian P.</creator><creator>Grant, Perry C.</creator><creator>Ariyawansa, Gamini</creator><creator>Stephenson, Chad A.</creator><creator>Kadlec, Clark N.</creator><creator>Hawkins, Samuel D.</creator><creator>Klem, John F.</creator><creator>Shaner, Eric A.</creator><creator>Steenbergen, Elizabeth H.</creator><creator>Schaefer, Stephen T.</creator><creator>Johnson, Shane R.</creator><creator>Webster, Preston T.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0598-5780</orcidid><orcidid>https://orcid.org/0000-0002-8634-1556</orcidid><orcidid>https://orcid.org/0000-0001-5838-9301</orcidid><orcidid>https://orcid.org/0000-0002-5908-3803</orcidid><orcidid>https://orcid.org/0000-0002-2148-015X</orcidid><orcidid>https://orcid.org/0000-0003-2078-3244</orcidid><orcidid>https://orcid.org/0000000158389301</orcidid><orcidid>https://orcid.org/0000000320783244</orcidid><orcidid>https://orcid.org/0000000205985780</orcidid><orcidid>https://orcid.org/0000000286341556</orcidid><orcidid>https://orcid.org/0000000259083803</orcidid><orcidid>https://orcid.org/000000022148015X</orcidid></search><sort><creationdate>20210514</creationdate><title>Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices</title><author>Carrasco, Rigo A. ; Morath, Christian P. ; Grant, Perry C. ; Ariyawansa, Gamini ; Stephenson, Chad A. ; Kadlec, Clark N. ; Hawkins, Samuel D. ; Klem, John F. ; Shaner, Eric A. ; Steenbergen, Elizabeth H. ; Schaefer, Stephen T. ; Johnson, Shane R. ; Webster, Preston T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-fe761bb9ebae75af27e9c2ef988d9dc57e5bca0495286be04ffd540bab742c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption cross sections</topic><topic>Applied physics</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Augers</topic><topic>Carrier lifetime</topic><topic>Design optimization</topic><topic>Diffusion length</topic><topic>Energy levels</topic><topic>Hole mobility</topic><topic>Indium arsenides</topic><topic>Indium gallium arsenides</topic><topic>Infrared analysis</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Lifetime</topic><topic>Lower bounds</topic><topic>Minority carriers</topic><topic>Photoluminescence</topic><topic>Quantum efficiency</topic><topic>Superlattices</topic><topic>Temperature dependence</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrasco, Rigo A.</creatorcontrib><creatorcontrib>Morath, Christian P.</creatorcontrib><creatorcontrib>Grant, Perry C.</creatorcontrib><creatorcontrib>Ariyawansa, Gamini</creatorcontrib><creatorcontrib>Stephenson, Chad A.</creatorcontrib><creatorcontrib>Kadlec, Clark N.</creatorcontrib><creatorcontrib>Hawkins, Samuel D.</creatorcontrib><creatorcontrib>Klem, John F.</creatorcontrib><creatorcontrib>Shaner, Eric A.</creatorcontrib><creatorcontrib>Steenbergen, Elizabeth H.</creatorcontrib><creatorcontrib>Schaefer, Stephen T.</creatorcontrib><creatorcontrib>Johnson, Shane R.</creatorcontrib><creatorcontrib>Webster, Preston T.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrasco, Rigo A.</au><au>Morath, Christian P.</au><au>Grant, Perry C.</au><au>Ariyawansa, Gamini</au><au>Stephenson, Chad A.</au><au>Kadlec, Clark N.</au><au>Hawkins, Samuel D.</au><au>Klem, John F.</au><au>Shaner, Eric A.</au><au>Steenbergen, Elizabeth H.</au><au>Schaefer, Stephen T.</au><au>Johnson, Shane R.</au><au>Webster, Preston T.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices</atitle><jtitle>Journal of applied physics</jtitle><date>2021-05-14</date><risdate>2021</risdate><volume>129</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport properties. Time-resolved photoluminescence measurements of InGaAs/InAsSb superlattice characterization- and doped device structures are reported from 77 to 300 K and compared to InAs/InAsSb. The low-injection photoluminescence decay yields the minority carrier lifetime, which is analyzed with a recombination rate model, enabling the determination of the temperature-dependent Shockley–Read–Hall, radiative, and Auger recombination lifetimes and extraction of defect energy levels and capture cross section defect concentration products. The Shockley–Read–Hall-limited lifetime of undoped InGaAs/InAsSb is marginally reduced from 2.3 to 1.4 μs due to the inclusion of Ga; however, given that Ga improves the vertical hole mobility by a factor of &gt;10×, a diffusion-limited InGaAs/InAsSb superlattice nBn could expect a lower bound of 2.5× improvement in diffusion length with significant impact on photodetector quantum efficiency and radiation hardness. At temperatures below 120 K, the doped device structures are Shockley–Read–Hall limited at 0.5 μs, which shows promise for detector applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0047178</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0598-5780</orcidid><orcidid>https://orcid.org/0000-0002-8634-1556</orcidid><orcidid>https://orcid.org/0000-0001-5838-9301</orcidid><orcidid>https://orcid.org/0000-0002-5908-3803</orcidid><orcidid>https://orcid.org/0000-0002-2148-015X</orcidid><orcidid>https://orcid.org/0000-0003-2078-3244</orcidid><orcidid>https://orcid.org/0000000158389301</orcidid><orcidid>https://orcid.org/0000000320783244</orcidid><orcidid>https://orcid.org/0000000205985780</orcidid><orcidid>https://orcid.org/0000000286341556</orcidid><orcidid>https://orcid.org/0000000259083803</orcidid><orcidid>https://orcid.org/000000022148015X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-05, Vol.129 (18)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1810399
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorption cross sections
Applied physics
ATOMIC AND MOLECULAR PHYSICS
Augers
Carrier lifetime
Design optimization
Diffusion length
Energy levels
Hole mobility
Indium arsenides
Indium gallium arsenides
Infrared analysis
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Lifetime
Lower bounds
Minority carriers
Photoluminescence
Quantum efficiency
Superlattices
Temperature dependence
Transport properties
title Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recombination%20rate%20analysis%20in%20long%20minority%20carrier%20lifetime%20mid-wave%20infrared%20InGaAs/InAsSb%20superlattices&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Carrasco,%20Rigo%20A.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-05-14&rft.volume=129&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0047178&rft_dat=%3Cproquest_osti_%3E2525151864%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525151864&rft_id=info:pmid/&rfr_iscdi=true