Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices
Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport p...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2021-05, Vol.129 (18) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 129 |
creator | Carrasco, Rigo A. Morath, Christian P. Grant, Perry C. Ariyawansa, Gamini Stephenson, Chad A. Kadlec, Clark N. Hawkins, Samuel D. Klem, John F. Shaner, Eric A. Steenbergen, Elizabeth H. Schaefer, Stephen T. Johnson, Shane R. Webster, Preston T. |
description | Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport properties. Time-resolved photoluminescence measurements of InGaAs/InAsSb superlattice characterization- and doped device structures are reported from 77 to 300 K and compared to InAs/InAsSb. The low-injection photoluminescence decay yields the minority carrier lifetime, which is analyzed with a recombination rate model, enabling the determination of the temperature-dependent Shockley–Read–Hall, radiative, and Auger recombination lifetimes and extraction of defect energy levels and capture cross section defect concentration products. The Shockley–Read–Hall-limited lifetime of undoped InGaAs/InAsSb is marginally reduced from 2.3 to 1.4 μs due to the inclusion of Ga; however, given that Ga improves the vertical hole mobility by a factor of >10×, a diffusion-limited InGaAs/InAsSb superlattice nBn could expect a lower bound of 2.5× improvement in diffusion length with significant impact on photodetector quantum efficiency and radiation hardness. At temperatures below 120 K, the doped device structures are Shockley–Read–Hall limited at 0.5 μs, which shows promise for detector applications. |
doi_str_mv | 10.1063/5.0047178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1810399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525151864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-fe761bb9ebae75af27e9c2ef988d9dc57e5bca0495286be04ffd540bab742c653</originalsourceid><addsrcrecordid>eNp90MFqGzEQBmBRGqib5NA3EMkpgY2l3dVKOhqTuIZAoUnOQtKOGjlryZFkF799N93QHgo9zWE-_mF-hL5QckNJ18zZDSEtp1x8QDNKhKw4Y-QjmhFS00pILj-hzzlvCKFUNHKGXr6DjVvjgy4-Bpx0AayDHo7ZZ-wDHmL4gbc-xOTLEVudkoeEB--g-C2Mm776qQ8wUpd0gh6vw0ov8nwdFvnB4LzfQRp0Kd5CPkMnTg8Zzt_nKXq6u31cfq3uv63Wy8V9ZRshS-WAd9QYCUYDZ9rVHKStwUkhetlbxoEZq0krWS06A6R1rmctMdrwtrYda07RxZQbc_EqW1_APtsYAtiiqKCkkXJElxPapfi6h1zUJu7T-HlWNasZZVR07aiuJmVTzDmBU7vktzodFSXqrXDF1Hvho72e7NvF33X-wYeY_kK1693_8L_JvwAJ1ZBP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525151864</pqid></control><display><type>article</type><title>Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Carrasco, Rigo A. ; Morath, Christian P. ; Grant, Perry C. ; Ariyawansa, Gamini ; Stephenson, Chad A. ; Kadlec, Clark N. ; Hawkins, Samuel D. ; Klem, John F. ; Shaner, Eric A. ; Steenbergen, Elizabeth H. ; Schaefer, Stephen T. ; Johnson, Shane R. ; Webster, Preston T.</creator><creatorcontrib>Carrasco, Rigo A. ; Morath, Christian P. ; Grant, Perry C. ; Ariyawansa, Gamini ; Stephenson, Chad A. ; Kadlec, Clark N. ; Hawkins, Samuel D. ; Klem, John F. ; Shaner, Eric A. ; Steenbergen, Elizabeth H. ; Schaefer, Stephen T. ; Johnson, Shane R. ; Webster, Preston T. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport properties. Time-resolved photoluminescence measurements of InGaAs/InAsSb superlattice characterization- and doped device structures are reported from 77 to 300 K and compared to InAs/InAsSb. The low-injection photoluminescence decay yields the minority carrier lifetime, which is analyzed with a recombination rate model, enabling the determination of the temperature-dependent Shockley–Read–Hall, radiative, and Auger recombination lifetimes and extraction of defect energy levels and capture cross section defect concentration products. The Shockley–Read–Hall-limited lifetime of undoped InGaAs/InAsSb is marginally reduced from 2.3 to 1.4 μs due to the inclusion of Ga; however, given that Ga improves the vertical hole mobility by a factor of >10×, a diffusion-limited InGaAs/InAsSb superlattice nBn could expect a lower bound of 2.5× improvement in diffusion length with significant impact on photodetector quantum efficiency and radiation hardness. At temperatures below 120 K, the doped device structures are Shockley–Read–Hall limited at 0.5 μs, which shows promise for detector applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0047178</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption cross sections ; Applied physics ; ATOMIC AND MOLECULAR PHYSICS ; Augers ; Carrier lifetime ; Design optimization ; Diffusion length ; Energy levels ; Hole mobility ; Indium arsenides ; Indium gallium arsenides ; Infrared analysis ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Lifetime ; Lower bounds ; Minority carriers ; Photoluminescence ; Quantum efficiency ; Superlattices ; Temperature dependence ; Transport properties</subject><ispartof>Journal of applied physics, 2021-05, Vol.129 (18)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-fe761bb9ebae75af27e9c2ef988d9dc57e5bca0495286be04ffd540bab742c653</citedby><cites>FETCH-LOGICAL-c389t-fe761bb9ebae75af27e9c2ef988d9dc57e5bca0495286be04ffd540bab742c653</cites><orcidid>0000-0002-0598-5780 ; 0000-0002-8634-1556 ; 0000-0001-5838-9301 ; 0000-0002-5908-3803 ; 0000-0002-2148-015X ; 0000-0003-2078-3244 ; 0000000158389301 ; 0000000320783244 ; 0000000205985780 ; 0000000286341556 ; 0000000259083803 ; 000000022148015X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0047178$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1810399$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrasco, Rigo A.</creatorcontrib><creatorcontrib>Morath, Christian P.</creatorcontrib><creatorcontrib>Grant, Perry C.</creatorcontrib><creatorcontrib>Ariyawansa, Gamini</creatorcontrib><creatorcontrib>Stephenson, Chad A.</creatorcontrib><creatorcontrib>Kadlec, Clark N.</creatorcontrib><creatorcontrib>Hawkins, Samuel D.</creatorcontrib><creatorcontrib>Klem, John F.</creatorcontrib><creatorcontrib>Shaner, Eric A.</creatorcontrib><creatorcontrib>Steenbergen, Elizabeth H.</creatorcontrib><creatorcontrib>Schaefer, Stephen T.</creatorcontrib><creatorcontrib>Johnson, Shane R.</creatorcontrib><creatorcontrib>Webster, Preston T.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices</title><title>Journal of applied physics</title><description>Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport properties. Time-resolved photoluminescence measurements of InGaAs/InAsSb superlattice characterization- and doped device structures are reported from 77 to 300 K and compared to InAs/InAsSb. The low-injection photoluminescence decay yields the minority carrier lifetime, which is analyzed with a recombination rate model, enabling the determination of the temperature-dependent Shockley–Read–Hall, radiative, and Auger recombination lifetimes and extraction of defect energy levels and capture cross section defect concentration products. The Shockley–Read–Hall-limited lifetime of undoped InGaAs/InAsSb is marginally reduced from 2.3 to 1.4 μs due to the inclusion of Ga; however, given that Ga improves the vertical hole mobility by a factor of >10×, a diffusion-limited InGaAs/InAsSb superlattice nBn could expect a lower bound of 2.5× improvement in diffusion length with significant impact on photodetector quantum efficiency and radiation hardness. At temperatures below 120 K, the doped device structures are Shockley–Read–Hall limited at 0.5 μs, which shows promise for detector applications.</description><subject>Absorption cross sections</subject><subject>Applied physics</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Augers</subject><subject>Carrier lifetime</subject><subject>Design optimization</subject><subject>Diffusion length</subject><subject>Energy levels</subject><subject>Hole mobility</subject><subject>Indium arsenides</subject><subject>Indium gallium arsenides</subject><subject>Infrared analysis</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Lifetime</subject><subject>Lower bounds</subject><subject>Minority carriers</subject><subject>Photoluminescence</subject><subject>Quantum efficiency</subject><subject>Superlattices</subject><subject>Temperature dependence</subject><subject>Transport properties</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MFqGzEQBmBRGqib5NA3EMkpgY2l3dVKOhqTuIZAoUnOQtKOGjlryZFkF799N93QHgo9zWE-_mF-hL5QckNJ18zZDSEtp1x8QDNKhKw4Y-QjmhFS00pILj-hzzlvCKFUNHKGXr6DjVvjgy4-Bpx0AayDHo7ZZ-wDHmL4gbc-xOTLEVudkoeEB--g-C2Mm776qQ8wUpd0gh6vw0ov8nwdFvnB4LzfQRp0Kd5CPkMnTg8Zzt_nKXq6u31cfq3uv63Wy8V9ZRshS-WAd9QYCUYDZ9rVHKStwUkhetlbxoEZq0krWS06A6R1rmctMdrwtrYda07RxZQbc_EqW1_APtsYAtiiqKCkkXJElxPapfi6h1zUJu7T-HlWNasZZVR07aiuJmVTzDmBU7vktzodFSXqrXDF1Hvho72e7NvF33X-wYeY_kK1693_8L_JvwAJ1ZBP</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>Carrasco, Rigo A.</creator><creator>Morath, Christian P.</creator><creator>Grant, Perry C.</creator><creator>Ariyawansa, Gamini</creator><creator>Stephenson, Chad A.</creator><creator>Kadlec, Clark N.</creator><creator>Hawkins, Samuel D.</creator><creator>Klem, John F.</creator><creator>Shaner, Eric A.</creator><creator>Steenbergen, Elizabeth H.</creator><creator>Schaefer, Stephen T.</creator><creator>Johnson, Shane R.</creator><creator>Webster, Preston T.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0598-5780</orcidid><orcidid>https://orcid.org/0000-0002-8634-1556</orcidid><orcidid>https://orcid.org/0000-0001-5838-9301</orcidid><orcidid>https://orcid.org/0000-0002-5908-3803</orcidid><orcidid>https://orcid.org/0000-0002-2148-015X</orcidid><orcidid>https://orcid.org/0000-0003-2078-3244</orcidid><orcidid>https://orcid.org/0000000158389301</orcidid><orcidid>https://orcid.org/0000000320783244</orcidid><orcidid>https://orcid.org/0000000205985780</orcidid><orcidid>https://orcid.org/0000000286341556</orcidid><orcidid>https://orcid.org/0000000259083803</orcidid><orcidid>https://orcid.org/000000022148015X</orcidid></search><sort><creationdate>20210514</creationdate><title>Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices</title><author>Carrasco, Rigo A. ; Morath, Christian P. ; Grant, Perry C. ; Ariyawansa, Gamini ; Stephenson, Chad A. ; Kadlec, Clark N. ; Hawkins, Samuel D. ; Klem, John F. ; Shaner, Eric A. ; Steenbergen, Elizabeth H. ; Schaefer, Stephen T. ; Johnson, Shane R. ; Webster, Preston T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-fe761bb9ebae75af27e9c2ef988d9dc57e5bca0495286be04ffd540bab742c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption cross sections</topic><topic>Applied physics</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Augers</topic><topic>Carrier lifetime</topic><topic>Design optimization</topic><topic>Diffusion length</topic><topic>Energy levels</topic><topic>Hole mobility</topic><topic>Indium arsenides</topic><topic>Indium gallium arsenides</topic><topic>Infrared analysis</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Lifetime</topic><topic>Lower bounds</topic><topic>Minority carriers</topic><topic>Photoluminescence</topic><topic>Quantum efficiency</topic><topic>Superlattices</topic><topic>Temperature dependence</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrasco, Rigo A.</creatorcontrib><creatorcontrib>Morath, Christian P.</creatorcontrib><creatorcontrib>Grant, Perry C.</creatorcontrib><creatorcontrib>Ariyawansa, Gamini</creatorcontrib><creatorcontrib>Stephenson, Chad A.</creatorcontrib><creatorcontrib>Kadlec, Clark N.</creatorcontrib><creatorcontrib>Hawkins, Samuel D.</creatorcontrib><creatorcontrib>Klem, John F.</creatorcontrib><creatorcontrib>Shaner, Eric A.</creatorcontrib><creatorcontrib>Steenbergen, Elizabeth H.</creatorcontrib><creatorcontrib>Schaefer, Stephen T.</creatorcontrib><creatorcontrib>Johnson, Shane R.</creatorcontrib><creatorcontrib>Webster, Preston T.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrasco, Rigo A.</au><au>Morath, Christian P.</au><au>Grant, Perry C.</au><au>Ariyawansa, Gamini</au><au>Stephenson, Chad A.</au><au>Kadlec, Clark N.</au><au>Hawkins, Samuel D.</au><au>Klem, John F.</au><au>Shaner, Eric A.</au><au>Steenbergen, Elizabeth H.</au><au>Schaefer, Stephen T.</au><au>Johnson, Shane R.</au><au>Webster, Preston T.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices</atitle><jtitle>Journal of applied physics</jtitle><date>2021-05-14</date><risdate>2021</risdate><volume>129</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport properties. Time-resolved photoluminescence measurements of InGaAs/InAsSb superlattice characterization- and doped device structures are reported from 77 to 300 K and compared to InAs/InAsSb. The low-injection photoluminescence decay yields the minority carrier lifetime, which is analyzed with a recombination rate model, enabling the determination of the temperature-dependent Shockley–Read–Hall, radiative, and Auger recombination lifetimes and extraction of defect energy levels and capture cross section defect concentration products. The Shockley–Read–Hall-limited lifetime of undoped InGaAs/InAsSb is marginally reduced from 2.3 to 1.4 μs due to the inclusion of Ga; however, given that Ga improves the vertical hole mobility by a factor of >10×, a diffusion-limited InGaAs/InAsSb superlattice nBn could expect a lower bound of 2.5× improvement in diffusion length with significant impact on photodetector quantum efficiency and radiation hardness. At temperatures below 120 K, the doped device structures are Shockley–Read–Hall limited at 0.5 μs, which shows promise for detector applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0047178</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0598-5780</orcidid><orcidid>https://orcid.org/0000-0002-8634-1556</orcidid><orcidid>https://orcid.org/0000-0001-5838-9301</orcidid><orcidid>https://orcid.org/0000-0002-5908-3803</orcidid><orcidid>https://orcid.org/0000-0002-2148-015X</orcidid><orcidid>https://orcid.org/0000-0003-2078-3244</orcidid><orcidid>https://orcid.org/0000000158389301</orcidid><orcidid>https://orcid.org/0000000320783244</orcidid><orcidid>https://orcid.org/0000000205985780</orcidid><orcidid>https://orcid.org/0000000286341556</orcidid><orcidid>https://orcid.org/0000000259083803</orcidid><orcidid>https://orcid.org/000000022148015X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2021-05, Vol.129 (18) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_1810399 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorption cross sections Applied physics ATOMIC AND MOLECULAR PHYSICS Augers Carrier lifetime Design optimization Diffusion length Energy levels Hole mobility Indium arsenides Indium gallium arsenides Infrared analysis INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Lifetime Lower bounds Minority carriers Photoluminescence Quantum efficiency Superlattices Temperature dependence Transport properties |
title | Recombination rate analysis in long minority carrier lifetime mid-wave infrared InGaAs/InAsSb superlattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recombination%20rate%20analysis%20in%20long%20minority%20carrier%20lifetime%20mid-wave%20infrared%20InGaAs/InAsSb%20superlattices&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Carrasco,%20Rigo%20A.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-05-14&rft.volume=129&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0047178&rft_dat=%3Cproquest_osti_%3E2525151864%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525151864&rft_id=info:pmid/&rfr_iscdi=true |