Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis

Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-03, Vol.15 (3), p.4155-4164
Hauptverfasser: Chakrabarti, Bhaswar, Chan, Henry, Alam, Khan, Koneru, Aditya, Gage, Thomas E, Ocola, Leonidas E, Divan, Ralu, Rosenmann, Daniel, Khanna, Abhishek, Grisafe, Benjamin, Sanders, Toby, Datta, Suman, Arslan, Ilke, Sankaranarayan, Subramanian K. R. S, Guha, Supratik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4164
container_issue 3
container_start_page 4155
container_title ACS nano
container_volume 15
creator Chakrabarti, Bhaswar
Chan, Henry
Alam, Khan
Koneru, Aditya
Gage, Thomas E
Ocola, Leonidas E
Divan, Ralu
Rosenmann, Daniel
Khanna, Abhishek
Grisafe, Benjamin
Sanders, Toby
Datta, Suman
Arslan, Ilke
Sankaranarayan, Subramanian K. R. S
Guha, Supratik
description Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (>109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.
doi_str_mv 10.1021/acsnano.0c03201
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1810325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495404142</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-f4b5c98290c9394802b8f067398666d3bb68830d58efaf9648ebcb73a78275983</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoVqtrdzK4EqRtMslkkqXUV6E-sBbchUyasSnTpCYZof_elNbuXN27ON_HvQeACwT7COZoIFWw0ro-VBDnEB2AE8Qx7UFGPw_3e4E64DSEBYRFyUp6DDoYU0JLUp6At5cUXznv2pDdGd1oFb1R2bsOJkTzo7NnvXTe6JBNg7Ff2UR_t9pGI5tsZGvTRC-jcTabrG2cb0Jn4KiWTdDnu9kF04f7j-FTb_z6OBrejnuSQBR7NakKxVnOoeKYEwbzitWQlpgzSukMVxVlDMNZwXQta04J05WqSixLlpcFZ7gLrra9Lt0pgjJRq7ly1qYPBGIo-SgSdL2FVt6lu0MUSxOUbhppdfpY5IQXBBJE8oQOtqjyLgSva7HyZin9WiAoNq7FzrXYuU6Jy115Wy31bM__yU3AzRZISbFwrbdJyL91v2igie4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495404142</pqid></control><display><type>article</type><title>Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis</title><source>American Chemical Society Journals</source><creator>Chakrabarti, Bhaswar ; Chan, Henry ; Alam, Khan ; Koneru, Aditya ; Gage, Thomas E ; Ocola, Leonidas E ; Divan, Ralu ; Rosenmann, Daniel ; Khanna, Abhishek ; Grisafe, Benjamin ; Sanders, Toby ; Datta, Suman ; Arslan, Ilke ; Sankaranarayan, Subramanian K. R. S ; Guha, Supratik</creator><creatorcontrib>Chakrabarti, Bhaswar ; Chan, Henry ; Alam, Khan ; Koneru, Aditya ; Gage, Thomas E ; Ocola, Leonidas E ; Divan, Ralu ; Rosenmann, Daniel ; Khanna, Abhishek ; Grisafe, Benjamin ; Sanders, Toby ; Datta, Suman ; Arslan, Ilke ; Sankaranarayan, Subramanian K. R. S ; Guha, Supratik ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (&gt;109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c03201</identifier><identifier>PMID: 33646747</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>conductive bridge memory ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nanoporous alumina ; oxides ; resistive memory ; sequential infiltration synthesis ; ultra-low power switching ; ultralow power switching</subject><ispartof>ACS nano, 2021-03, Vol.15 (3), p.4155-4164</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-f4b5c98290c9394802b8f067398666d3bb68830d58efaf9648ebcb73a78275983</citedby><cites>FETCH-LOGICAL-a401t-f4b5c98290c9394802b8f067398666d3bb68830d58efaf9648ebcb73a78275983</cites><orcidid>0000-0003-0623-3895 ; 0000-0001-5071-8318 ; 0000-0002-8198-7737 ; 0000000306233895 ; 0000000281987737 ; 0000000150718318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c03201$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c03201$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33646747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1810325$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakrabarti, Bhaswar</creatorcontrib><creatorcontrib>Chan, Henry</creatorcontrib><creatorcontrib>Alam, Khan</creatorcontrib><creatorcontrib>Koneru, Aditya</creatorcontrib><creatorcontrib>Gage, Thomas E</creatorcontrib><creatorcontrib>Ocola, Leonidas E</creatorcontrib><creatorcontrib>Divan, Ralu</creatorcontrib><creatorcontrib>Rosenmann, Daniel</creatorcontrib><creatorcontrib>Khanna, Abhishek</creatorcontrib><creatorcontrib>Grisafe, Benjamin</creatorcontrib><creatorcontrib>Sanders, Toby</creatorcontrib><creatorcontrib>Datta, Suman</creatorcontrib><creatorcontrib>Arslan, Ilke</creatorcontrib><creatorcontrib>Sankaranarayan, Subramanian K. R. S</creatorcontrib><creatorcontrib>Guha, Supratik</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (&gt;109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.</description><subject>conductive bridge memory</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nanoporous alumina</subject><subject>oxides</subject><subject>resistive memory</subject><subject>sequential infiltration synthesis</subject><subject>ultra-low power switching</subject><subject>ultralow power switching</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEURoMoVqtrdzK4EqRtMslkkqXUV6E-sBbchUyasSnTpCYZof_elNbuXN27ON_HvQeACwT7COZoIFWw0ro-VBDnEB2AE8Qx7UFGPw_3e4E64DSEBYRFyUp6DDoYU0JLUp6At5cUXznv2pDdGd1oFb1R2bsOJkTzo7NnvXTe6JBNg7Ff2UR_t9pGI5tsZGvTRC-jcTabrG2cb0Jn4KiWTdDnu9kF04f7j-FTb_z6OBrejnuSQBR7NakKxVnOoeKYEwbzitWQlpgzSukMVxVlDMNZwXQta04J05WqSixLlpcFZ7gLrra9Lt0pgjJRq7ly1qYPBGIo-SgSdL2FVt6lu0MUSxOUbhppdfpY5IQXBBJE8oQOtqjyLgSva7HyZin9WiAoNq7FzrXYuU6Jy115Wy31bM__yU3AzRZISbFwrbdJyL91v2igie4</recordid><startdate>20210323</startdate><enddate>20210323</enddate><creator>Chakrabarti, Bhaswar</creator><creator>Chan, Henry</creator><creator>Alam, Khan</creator><creator>Koneru, Aditya</creator><creator>Gage, Thomas E</creator><creator>Ocola, Leonidas E</creator><creator>Divan, Ralu</creator><creator>Rosenmann, Daniel</creator><creator>Khanna, Abhishek</creator><creator>Grisafe, Benjamin</creator><creator>Sanders, Toby</creator><creator>Datta, Suman</creator><creator>Arslan, Ilke</creator><creator>Sankaranarayan, Subramanian K. R. S</creator><creator>Guha, Supratik</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0623-3895</orcidid><orcidid>https://orcid.org/0000-0001-5071-8318</orcidid><orcidid>https://orcid.org/0000-0002-8198-7737</orcidid><orcidid>https://orcid.org/0000000306233895</orcidid><orcidid>https://orcid.org/0000000281987737</orcidid><orcidid>https://orcid.org/0000000150718318</orcidid></search><sort><creationdate>20210323</creationdate><title>Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis</title><author>Chakrabarti, Bhaswar ; Chan, Henry ; Alam, Khan ; Koneru, Aditya ; Gage, Thomas E ; Ocola, Leonidas E ; Divan, Ralu ; Rosenmann, Daniel ; Khanna, Abhishek ; Grisafe, Benjamin ; Sanders, Toby ; Datta, Suman ; Arslan, Ilke ; Sankaranarayan, Subramanian K. R. S ; Guha, Supratik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-f4b5c98290c9394802b8f067398666d3bb68830d58efaf9648ebcb73a78275983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>conductive bridge memory</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nanoporous alumina</topic><topic>oxides</topic><topic>resistive memory</topic><topic>sequential infiltration synthesis</topic><topic>ultra-low power switching</topic><topic>ultralow power switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarti, Bhaswar</creatorcontrib><creatorcontrib>Chan, Henry</creatorcontrib><creatorcontrib>Alam, Khan</creatorcontrib><creatorcontrib>Koneru, Aditya</creatorcontrib><creatorcontrib>Gage, Thomas E</creatorcontrib><creatorcontrib>Ocola, Leonidas E</creatorcontrib><creatorcontrib>Divan, Ralu</creatorcontrib><creatorcontrib>Rosenmann, Daniel</creatorcontrib><creatorcontrib>Khanna, Abhishek</creatorcontrib><creatorcontrib>Grisafe, Benjamin</creatorcontrib><creatorcontrib>Sanders, Toby</creatorcontrib><creatorcontrib>Datta, Suman</creatorcontrib><creatorcontrib>Arslan, Ilke</creatorcontrib><creatorcontrib>Sankaranarayan, Subramanian K. R. S</creatorcontrib><creatorcontrib>Guha, Supratik</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarti, Bhaswar</au><au>Chan, Henry</au><au>Alam, Khan</au><au>Koneru, Aditya</au><au>Gage, Thomas E</au><au>Ocola, Leonidas E</au><au>Divan, Ralu</au><au>Rosenmann, Daniel</au><au>Khanna, Abhishek</au><au>Grisafe, Benjamin</au><au>Sanders, Toby</au><au>Datta, Suman</au><au>Arslan, Ilke</au><au>Sankaranarayan, Subramanian K. R. S</au><au>Guha, Supratik</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-03-23</date><risdate>2021</risdate><volume>15</volume><issue>3</issue><spage>4155</spage><epage>4164</epage><pages>4155-4164</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (&gt;109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33646747</pmid><doi>10.1021/acsnano.0c03201</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0623-3895</orcidid><orcidid>https://orcid.org/0000-0001-5071-8318</orcidid><orcidid>https://orcid.org/0000-0002-8198-7737</orcidid><orcidid>https://orcid.org/0000000306233895</orcidid><orcidid>https://orcid.org/0000000281987737</orcidid><orcidid>https://orcid.org/0000000150718318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-03, Vol.15 (3), p.4155-4164
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1810325
source American Chemical Society Journals
subjects conductive bridge memory
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
nanoporous alumina
oxides
resistive memory
sequential infiltration synthesis
ultra-low power switching
ultralow power switching
title Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoporous%20Dielectric%20Resistive%20Memories%20Using%20Sequential%20Infiltration%20Synthesis&rft.jtitle=ACS%20nano&rft.au=Chakrabarti,%20Bhaswar&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-03-23&rft.volume=15&rft.issue=3&rft.spage=4155&rft.epage=4164&rft.pages=4155-4164&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c03201&rft_dat=%3Cproquest_osti_%3E2495404142%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495404142&rft_id=info:pmid/33646747&rfr_iscdi=true