Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis
Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-03, Vol.15 (3), p.4155-4164 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4164 |
---|---|
container_issue | 3 |
container_start_page | 4155 |
container_title | ACS nano |
container_volume | 15 |
creator | Chakrabarti, Bhaswar Chan, Henry Alam, Khan Koneru, Aditya Gage, Thomas E Ocola, Leonidas E Divan, Ralu Rosenmann, Daniel Khanna, Abhishek Grisafe, Benjamin Sanders, Toby Datta, Suman Arslan, Ilke Sankaranarayan, Subramanian K. R. S Guha, Supratik |
description | Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (>109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials. |
doi_str_mv | 10.1021/acsnano.0c03201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1810325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495404142</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-f4b5c98290c9394802b8f067398666d3bb68830d58efaf9648ebcb73a78275983</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoVqtrdzK4EqRtMslkkqXUV6E-sBbchUyasSnTpCYZof_elNbuXN27ON_HvQeACwT7COZoIFWw0ro-VBDnEB2AE8Qx7UFGPw_3e4E64DSEBYRFyUp6DDoYU0JLUp6At5cUXznv2pDdGd1oFb1R2bsOJkTzo7NnvXTe6JBNg7Ff2UR_t9pGI5tsZGvTRC-jcTabrG2cb0Jn4KiWTdDnu9kF04f7j-FTb_z6OBrejnuSQBR7NakKxVnOoeKYEwbzitWQlpgzSukMVxVlDMNZwXQta04J05WqSixLlpcFZ7gLrra9Lt0pgjJRq7ly1qYPBGIo-SgSdL2FVt6lu0MUSxOUbhppdfpY5IQXBBJE8oQOtqjyLgSva7HyZin9WiAoNq7FzrXYuU6Jy115Wy31bM__yU3AzRZISbFwrbdJyL91v2igie4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495404142</pqid></control><display><type>article</type><title>Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis</title><source>American Chemical Society Journals</source><creator>Chakrabarti, Bhaswar ; Chan, Henry ; Alam, Khan ; Koneru, Aditya ; Gage, Thomas E ; Ocola, Leonidas E ; Divan, Ralu ; Rosenmann, Daniel ; Khanna, Abhishek ; Grisafe, Benjamin ; Sanders, Toby ; Datta, Suman ; Arslan, Ilke ; Sankaranarayan, Subramanian K. R. S ; Guha, Supratik</creator><creatorcontrib>Chakrabarti, Bhaswar ; Chan, Henry ; Alam, Khan ; Koneru, Aditya ; Gage, Thomas E ; Ocola, Leonidas E ; Divan, Ralu ; Rosenmann, Daniel ; Khanna, Abhishek ; Grisafe, Benjamin ; Sanders, Toby ; Datta, Suman ; Arslan, Ilke ; Sankaranarayan, Subramanian K. R. S ; Guha, Supratik ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (>109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c03201</identifier><identifier>PMID: 33646747</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>conductive bridge memory ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nanoporous alumina ; oxides ; resistive memory ; sequential infiltration synthesis ; ultra-low power switching ; ultralow power switching</subject><ispartof>ACS nano, 2021-03, Vol.15 (3), p.4155-4164</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-f4b5c98290c9394802b8f067398666d3bb68830d58efaf9648ebcb73a78275983</citedby><cites>FETCH-LOGICAL-a401t-f4b5c98290c9394802b8f067398666d3bb68830d58efaf9648ebcb73a78275983</cites><orcidid>0000-0003-0623-3895 ; 0000-0001-5071-8318 ; 0000-0002-8198-7737 ; 0000000306233895 ; 0000000281987737 ; 0000000150718318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c03201$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c03201$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33646747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1810325$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakrabarti, Bhaswar</creatorcontrib><creatorcontrib>Chan, Henry</creatorcontrib><creatorcontrib>Alam, Khan</creatorcontrib><creatorcontrib>Koneru, Aditya</creatorcontrib><creatorcontrib>Gage, Thomas E</creatorcontrib><creatorcontrib>Ocola, Leonidas E</creatorcontrib><creatorcontrib>Divan, Ralu</creatorcontrib><creatorcontrib>Rosenmann, Daniel</creatorcontrib><creatorcontrib>Khanna, Abhishek</creatorcontrib><creatorcontrib>Grisafe, Benjamin</creatorcontrib><creatorcontrib>Sanders, Toby</creatorcontrib><creatorcontrib>Datta, Suman</creatorcontrib><creatorcontrib>Arslan, Ilke</creatorcontrib><creatorcontrib>Sankaranarayan, Subramanian K. R. S</creatorcontrib><creatorcontrib>Guha, Supratik</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (>109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.</description><subject>conductive bridge memory</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nanoporous alumina</subject><subject>oxides</subject><subject>resistive memory</subject><subject>sequential infiltration synthesis</subject><subject>ultra-low power switching</subject><subject>ultralow power switching</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEURoMoVqtrdzK4EqRtMslkkqXUV6E-sBbchUyasSnTpCYZof_elNbuXN27ON_HvQeACwT7COZoIFWw0ro-VBDnEB2AE8Qx7UFGPw_3e4E64DSEBYRFyUp6DDoYU0JLUp6At5cUXznv2pDdGd1oFb1R2bsOJkTzo7NnvXTe6JBNg7Ff2UR_t9pGI5tsZGvTRC-jcTabrG2cb0Jn4KiWTdDnu9kF04f7j-FTb_z6OBrejnuSQBR7NakKxVnOoeKYEwbzitWQlpgzSukMVxVlDMNZwXQta04J05WqSixLlpcFZ7gLrra9Lt0pgjJRq7ly1qYPBGIo-SgSdL2FVt6lu0MUSxOUbhppdfpY5IQXBBJE8oQOtqjyLgSva7HyZin9WiAoNq7FzrXYuU6Jy115Wy31bM__yU3AzRZISbFwrbdJyL91v2igie4</recordid><startdate>20210323</startdate><enddate>20210323</enddate><creator>Chakrabarti, Bhaswar</creator><creator>Chan, Henry</creator><creator>Alam, Khan</creator><creator>Koneru, Aditya</creator><creator>Gage, Thomas E</creator><creator>Ocola, Leonidas E</creator><creator>Divan, Ralu</creator><creator>Rosenmann, Daniel</creator><creator>Khanna, Abhishek</creator><creator>Grisafe, Benjamin</creator><creator>Sanders, Toby</creator><creator>Datta, Suman</creator><creator>Arslan, Ilke</creator><creator>Sankaranarayan, Subramanian K. R. S</creator><creator>Guha, Supratik</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0623-3895</orcidid><orcidid>https://orcid.org/0000-0001-5071-8318</orcidid><orcidid>https://orcid.org/0000-0002-8198-7737</orcidid><orcidid>https://orcid.org/0000000306233895</orcidid><orcidid>https://orcid.org/0000000281987737</orcidid><orcidid>https://orcid.org/0000000150718318</orcidid></search><sort><creationdate>20210323</creationdate><title>Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis</title><author>Chakrabarti, Bhaswar ; Chan, Henry ; Alam, Khan ; Koneru, Aditya ; Gage, Thomas E ; Ocola, Leonidas E ; Divan, Ralu ; Rosenmann, Daniel ; Khanna, Abhishek ; Grisafe, Benjamin ; Sanders, Toby ; Datta, Suman ; Arslan, Ilke ; Sankaranarayan, Subramanian K. R. S ; Guha, Supratik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-f4b5c98290c9394802b8f067398666d3bb68830d58efaf9648ebcb73a78275983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>conductive bridge memory</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nanoporous alumina</topic><topic>oxides</topic><topic>resistive memory</topic><topic>sequential infiltration synthesis</topic><topic>ultra-low power switching</topic><topic>ultralow power switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarti, Bhaswar</creatorcontrib><creatorcontrib>Chan, Henry</creatorcontrib><creatorcontrib>Alam, Khan</creatorcontrib><creatorcontrib>Koneru, Aditya</creatorcontrib><creatorcontrib>Gage, Thomas E</creatorcontrib><creatorcontrib>Ocola, Leonidas E</creatorcontrib><creatorcontrib>Divan, Ralu</creatorcontrib><creatorcontrib>Rosenmann, Daniel</creatorcontrib><creatorcontrib>Khanna, Abhishek</creatorcontrib><creatorcontrib>Grisafe, Benjamin</creatorcontrib><creatorcontrib>Sanders, Toby</creatorcontrib><creatorcontrib>Datta, Suman</creatorcontrib><creatorcontrib>Arslan, Ilke</creatorcontrib><creatorcontrib>Sankaranarayan, Subramanian K. R. S</creatorcontrib><creatorcontrib>Guha, Supratik</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarti, Bhaswar</au><au>Chan, Henry</au><au>Alam, Khan</au><au>Koneru, Aditya</au><au>Gage, Thomas E</au><au>Ocola, Leonidas E</au><au>Divan, Ralu</au><au>Rosenmann, Daniel</au><au>Khanna, Abhishek</au><au>Grisafe, Benjamin</au><au>Sanders, Toby</au><au>Datta, Suman</au><au>Arslan, Ilke</au><au>Sankaranarayan, Subramanian K. R. S</au><au>Guha, Supratik</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-03-23</date><risdate>2021</risdate><volume>15</volume><issue>3</issue><spage>4155</spage><epage>4164</epage><pages>4155-4164</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (>109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33646747</pmid><doi>10.1021/acsnano.0c03201</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0623-3895</orcidid><orcidid>https://orcid.org/0000-0001-5071-8318</orcidid><orcidid>https://orcid.org/0000-0002-8198-7737</orcidid><orcidid>https://orcid.org/0000000306233895</orcidid><orcidid>https://orcid.org/0000000281987737</orcidid><orcidid>https://orcid.org/0000000150718318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-03, Vol.15 (3), p.4155-4164 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1810325 |
source | American Chemical Society Journals |
subjects | conductive bridge memory INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY nanoporous alumina oxides resistive memory sequential infiltration synthesis ultra-low power switching ultralow power switching |
title | Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoporous%20Dielectric%20Resistive%20Memories%20Using%20Sequential%20Infiltration%20Synthesis&rft.jtitle=ACS%20nano&rft.au=Chakrabarti,%20Bhaswar&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-03-23&rft.volume=15&rft.issue=3&rft.spage=4155&rft.epage=4164&rft.pages=4155-4164&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c03201&rft_dat=%3Cproquest_osti_%3E2495404142%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495404142&rft_id=info:pmid/33646747&rfr_iscdi=true |