Levenberg–Marquardt multi-classification using hinge loss function
Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datase...
Gespeichert in:
Veröffentlicht in: | Neural networks 2021-11, Vol.143 (C), p.564-571 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | C |
container_start_page | 564 |
container_title | Neural networks |
container_volume | 143 |
creator | Ozyildirim, Buse Melis Kiran, Mariam |
description | Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datasets become large, such as in multi-view classification problems, where finding global optima is a very costly problem. To solve this issue, we develop a solution for LM-enabled classification with, to the best of knowledge first-time implementation of hinge loss, for multiview classification. Hinge loss allows the neural network to converge faster and perform better than other loss functions such as logistic or square loss rates.
We prove our method by experimenting with various multiclass classification challenges of varying complexity and training data size. The empirical results show the training time and accuracy rates achieved, highlighting how our method outperforms in all cases, especially when training time is limited. Our paper presents important results in the relationship between optimization and loss functions and how these can impact deep learning problems. |
doi_str_mv | 10.1016/j.neunet.2021.07.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1810171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608021002732</els_id><sourcerecordid>2555966819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-3e0f8994a23f1d111aee7d53dcc6658b21649ffb77bbf3c0a5495f2f4e243eda3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBgwRE0uC_5I4CxIqv1IRC8yW41y3rlKntZ1KbLwDb8iTkCjMLPcO95yjez6ELgnOCCbFzSZz0DuIGcWUZLjMMMFHaEZEWaW0FPQYzbCoWFpggU_RWQgbjHEhOJuh-yUcwNXgVz9f36_K73vlm5hs-zbaVLcqBGusVtF2LumDdatkPQxI2i6ExPROj5dzdGJUG-Dib8_Rx-PD--I5Xb49vSzulqnmhMaUATaiqriizJCGEKIAyiZnjdZFkYuakoJXxtRlWdeGaaxyXuWGGg6UM2gUm6OrKbcL0cqgbQS91p1zoKMkYmBRkkF0PYl2vtv3EKLc2qChbZWDrg-S5nleFYUg1SDlk1T7oY4HI3febpX_lATLkazcyImsHMlKXMqB7GC7nWwwdD1Y8OMr4DQ01o-fNJ39P-AXNsSFcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555966819</pqid></control><display><type>article</type><title>Levenberg–Marquardt multi-classification using hinge loss function</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ozyildirim, Buse Melis ; Kiran, Mariam</creator><creatorcontrib>Ozyildirim, Buse Melis ; Kiran, Mariam</creatorcontrib><description>Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datasets become large, such as in multi-view classification problems, where finding global optima is a very costly problem. To solve this issue, we develop a solution for LM-enabled classification with, to the best of knowledge first-time implementation of hinge loss, for multiview classification. Hinge loss allows the neural network to converge faster and perform better than other loss functions such as logistic or square loss rates.
We prove our method by experimenting with various multiclass classification challenges of varying complexity and training data size. The empirical results show the training time and accuracy rates achieved, highlighting how our method outperforms in all cases, especially when training time is limited. Our paper presents important results in the relationship between optimization and loss functions and how these can impact deep learning problems.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2021.07.010</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Classification ; Hinge loss ; Levenberg–Marquardt ; Loss functions ; Neural networks</subject><ispartof>Neural networks, 2021-11, Vol.143 (C), p.564-571</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-3e0f8994a23f1d111aee7d53dcc6658b21649ffb77bbf3c0a5495f2f4e243eda3</citedby><cites>FETCH-LOGICAL-c412t-3e0f8994a23f1d111aee7d53dcc6658b21649ffb77bbf3c0a5495f2f4e243eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2021.07.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1810171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozyildirim, Buse Melis</creatorcontrib><creatorcontrib>Kiran, Mariam</creatorcontrib><title>Levenberg–Marquardt multi-classification using hinge loss function</title><title>Neural networks</title><description>Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datasets become large, such as in multi-view classification problems, where finding global optima is a very costly problem. To solve this issue, we develop a solution for LM-enabled classification with, to the best of knowledge first-time implementation of hinge loss, for multiview classification. Hinge loss allows the neural network to converge faster and perform better than other loss functions such as logistic or square loss rates.
We prove our method by experimenting with various multiclass classification challenges of varying complexity and training data size. The empirical results show the training time and accuracy rates achieved, highlighting how our method outperforms in all cases, especially when training time is limited. Our paper presents important results in the relationship between optimization and loss functions and how these can impact deep learning problems.</description><subject>Classification</subject><subject>Hinge loss</subject><subject>Levenberg–Marquardt</subject><subject>Loss functions</subject><subject>Neural networks</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBgwRE0uC_5I4CxIqv1IRC8yW41y3rlKntZ1KbLwDb8iTkCjMLPcO95yjez6ELgnOCCbFzSZz0DuIGcWUZLjMMMFHaEZEWaW0FPQYzbCoWFpggU_RWQgbjHEhOJuh-yUcwNXgVz9f36_K73vlm5hs-zbaVLcqBGusVtF2LumDdatkPQxI2i6ExPROj5dzdGJUG-Dib8_Rx-PD--I5Xb49vSzulqnmhMaUATaiqriizJCGEKIAyiZnjdZFkYuakoJXxtRlWdeGaaxyXuWGGg6UM2gUm6OrKbcL0cqgbQS91p1zoKMkYmBRkkF0PYl2vtv3EKLc2qChbZWDrg-S5nleFYUg1SDlk1T7oY4HI3febpX_lATLkazcyImsHMlKXMqB7GC7nWwwdD1Y8OMr4DQ01o-fNJ39P-AXNsSFcA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ozyildirim, Buse Melis</creator><creator>Kiran, Mariam</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>202111</creationdate><title>Levenberg–Marquardt multi-classification using hinge loss function</title><author>Ozyildirim, Buse Melis ; Kiran, Mariam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-3e0f8994a23f1d111aee7d53dcc6658b21649ffb77bbf3c0a5495f2f4e243eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Hinge loss</topic><topic>Levenberg–Marquardt</topic><topic>Loss functions</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozyildirim, Buse Melis</creatorcontrib><creatorcontrib>Kiran, Mariam</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozyildirim, Buse Melis</au><au>Kiran, Mariam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Levenberg–Marquardt multi-classification using hinge loss function</atitle><jtitle>Neural networks</jtitle><date>2021-11</date><risdate>2021</risdate><volume>143</volume><issue>C</issue><spage>564</spage><epage>571</epage><pages>564-571</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datasets become large, such as in multi-view classification problems, where finding global optima is a very costly problem. To solve this issue, we develop a solution for LM-enabled classification with, to the best of knowledge first-time implementation of hinge loss, for multiview classification. Hinge loss allows the neural network to converge faster and perform better than other loss functions such as logistic or square loss rates.
We prove our method by experimenting with various multiclass classification challenges of varying complexity and training data size. The empirical results show the training time and accuracy rates achieved, highlighting how our method outperforms in all cases, especially when training time is limited. Our paper presents important results in the relationship between optimization and loss functions and how these can impact deep learning problems.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.neunet.2021.07.010</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2021-11, Vol.143 (C), p.564-571 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_osti_scitechconnect_1810171 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Classification Hinge loss Levenberg–Marquardt Loss functions Neural networks |
title | Levenberg–Marquardt multi-classification using hinge loss function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Levenberg%E2%80%93Marquardt%20multi-classification%20using%20hinge%20loss%20function&rft.jtitle=Neural%20networks&rft.au=Ozyildirim,%20Buse%20Melis&rft.date=2021-11&rft.volume=143&rft.issue=C&rft.spage=564&rft.epage=571&rft.pages=564-571&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2021.07.010&rft_dat=%3Cproquest_osti_%3E2555966819%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555966819&rft_id=info:pmid/&rft_els_id=S0893608021002732&rfr_iscdi=true |