Levenberg–Marquardt multi-classification using hinge loss function

Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2021-11, Vol.143 (C), p.564-571
Hauptverfasser: Ozyildirim, Buse Melis, Kiran, Mariam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue C
container_start_page 564
container_title Neural networks
container_volume 143
creator Ozyildirim, Buse Melis
Kiran, Mariam
description Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datasets become large, such as in multi-view classification problems, where finding global optima is a very costly problem. To solve this issue, we develop a solution for LM-enabled classification with, to the best of knowledge first-time implementation of hinge loss, for multiview classification. Hinge loss allows the neural network to converge faster and perform better than other loss functions such as logistic or square loss rates. We prove our method by experimenting with various multiclass classification challenges of varying complexity and training data size. The empirical results show the training time and accuracy rates achieved, highlighting how our method outperforms in all cases, especially when training time is limited. Our paper presents important results in the relationship between optimization and loss functions and how these can impact deep learning problems.
doi_str_mv 10.1016/j.neunet.2021.07.010
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1810171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608021002732</els_id><sourcerecordid>2555966819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-3e0f8994a23f1d111aee7d53dcc6658b21649ffb77bbf3c0a5495f2f4e243eda3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBgwRE0uC_5I4CxIqv1IRC8yW41y3rlKntZ1KbLwDb8iTkCjMLPcO95yjez6ELgnOCCbFzSZz0DuIGcWUZLjMMMFHaEZEWaW0FPQYzbCoWFpggU_RWQgbjHEhOJuh-yUcwNXgVz9f36_K73vlm5hs-zbaVLcqBGusVtF2LumDdatkPQxI2i6ExPROj5dzdGJUG-Dib8_Rx-PD--I5Xb49vSzulqnmhMaUATaiqriizJCGEKIAyiZnjdZFkYuakoJXxtRlWdeGaaxyXuWGGg6UM2gUm6OrKbcL0cqgbQS91p1zoKMkYmBRkkF0PYl2vtv3EKLc2qChbZWDrg-S5nleFYUg1SDlk1T7oY4HI3febpX_lATLkazcyImsHMlKXMqB7GC7nWwwdD1Y8OMr4DQ01o-fNJ39P-AXNsSFcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555966819</pqid></control><display><type>article</type><title>Levenberg–Marquardt multi-classification using hinge loss function</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ozyildirim, Buse Melis ; Kiran, Mariam</creator><creatorcontrib>Ozyildirim, Buse Melis ; Kiran, Mariam</creatorcontrib><description>Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datasets become large, such as in multi-view classification problems, where finding global optima is a very costly problem. To solve this issue, we develop a solution for LM-enabled classification with, to the best of knowledge first-time implementation of hinge loss, for multiview classification. Hinge loss allows the neural network to converge faster and perform better than other loss functions such as logistic or square loss rates. We prove our method by experimenting with various multiclass classification challenges of varying complexity and training data size. The empirical results show the training time and accuracy rates achieved, highlighting how our method outperforms in all cases, especially when training time is limited. Our paper presents important results in the relationship between optimization and loss functions and how these can impact deep learning problems.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2021.07.010</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Classification ; Hinge loss ; Levenberg–Marquardt ; Loss functions ; Neural networks</subject><ispartof>Neural networks, 2021-11, Vol.143 (C), p.564-571</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-3e0f8994a23f1d111aee7d53dcc6658b21649ffb77bbf3c0a5495f2f4e243eda3</citedby><cites>FETCH-LOGICAL-c412t-3e0f8994a23f1d111aee7d53dcc6658b21649ffb77bbf3c0a5495f2f4e243eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2021.07.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1810171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozyildirim, Buse Melis</creatorcontrib><creatorcontrib>Kiran, Mariam</creatorcontrib><title>Levenberg–Marquardt multi-classification using hinge loss function</title><title>Neural networks</title><description>Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datasets become large, such as in multi-view classification problems, where finding global optima is a very costly problem. To solve this issue, we develop a solution for LM-enabled classification with, to the best of knowledge first-time implementation of hinge loss, for multiview classification. Hinge loss allows the neural network to converge faster and perform better than other loss functions such as logistic or square loss rates. We prove our method by experimenting with various multiclass classification challenges of varying complexity and training data size. The empirical results show the training time and accuracy rates achieved, highlighting how our method outperforms in all cases, especially when training time is limited. Our paper presents important results in the relationship between optimization and loss functions and how these can impact deep learning problems.</description><subject>Classification</subject><subject>Hinge loss</subject><subject>Levenberg–Marquardt</subject><subject>Loss functions</subject><subject>Neural networks</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBgwRE0uC_5I4CxIqv1IRC8yW41y3rlKntZ1KbLwDb8iTkCjMLPcO95yjez6ELgnOCCbFzSZz0DuIGcWUZLjMMMFHaEZEWaW0FPQYzbCoWFpggU_RWQgbjHEhOJuh-yUcwNXgVz9f36_K73vlm5hs-zbaVLcqBGusVtF2LumDdatkPQxI2i6ExPROj5dzdGJUG-Dib8_Rx-PD--I5Xb49vSzulqnmhMaUATaiqriizJCGEKIAyiZnjdZFkYuakoJXxtRlWdeGaaxyXuWGGg6UM2gUm6OrKbcL0cqgbQS91p1zoKMkYmBRkkF0PYl2vtv3EKLc2qChbZWDrg-S5nleFYUg1SDlk1T7oY4HI3febpX_lATLkazcyImsHMlKXMqB7GC7nWwwdD1Y8OMr4DQ01o-fNJ39P-AXNsSFcA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ozyildirim, Buse Melis</creator><creator>Kiran, Mariam</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>202111</creationdate><title>Levenberg–Marquardt multi-classification using hinge loss function</title><author>Ozyildirim, Buse Melis ; Kiran, Mariam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-3e0f8994a23f1d111aee7d53dcc6658b21649ffb77bbf3c0a5495f2f4e243eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Hinge loss</topic><topic>Levenberg–Marquardt</topic><topic>Loss functions</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozyildirim, Buse Melis</creatorcontrib><creatorcontrib>Kiran, Mariam</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozyildirim, Buse Melis</au><au>Kiran, Mariam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Levenberg–Marquardt multi-classification using hinge loss function</atitle><jtitle>Neural networks</jtitle><date>2021-11</date><risdate>2021</risdate><volume>143</volume><issue>C</issue><spage>564</spage><epage>571</epage><pages>564-571</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Incorporating higher-order optimization functions, such as Levenberg–Marquardt (LM) have revealed better generalizable solutions for deep learning problems. However, these higher-order optimization functions suffer from very large processing time and training complexity especially as training datasets become large, such as in multi-view classification problems, where finding global optima is a very costly problem. To solve this issue, we develop a solution for LM-enabled classification with, to the best of knowledge first-time implementation of hinge loss, for multiview classification. Hinge loss allows the neural network to converge faster and perform better than other loss functions such as logistic or square loss rates. We prove our method by experimenting with various multiclass classification challenges of varying complexity and training data size. The empirical results show the training time and accuracy rates achieved, highlighting how our method outperforms in all cases, especially when training time is limited. Our paper presents important results in the relationship between optimization and loss functions and how these can impact deep learning problems.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.neunet.2021.07.010</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2021-11, Vol.143 (C), p.564-571
issn 0893-6080
1879-2782
language eng
recordid cdi_osti_scitechconnect_1810171
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Classification
Hinge loss
Levenberg–Marquardt
Loss functions
Neural networks
title Levenberg–Marquardt multi-classification using hinge loss function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Levenberg%E2%80%93Marquardt%20multi-classification%20using%20hinge%20loss%20function&rft.jtitle=Neural%20networks&rft.au=Ozyildirim,%20Buse%20Melis&rft.date=2021-11&rft.volume=143&rft.issue=C&rft.spage=564&rft.epage=571&rft.pages=564-571&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2021.07.010&rft_dat=%3Cproquest_osti_%3E2555966819%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555966819&rft_id=info:pmid/&rft_els_id=S0893608021002732&rfr_iscdi=true