Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier

This work presents the results of gas concentration driven deuterium permeation experiments through chemical vapor deposited graphene on copper. Since the graphene is synthesized directly onto the copper, the permeation experiments are able to be performed over a large area (16.62 mm2) without the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-05, Vol.176 (C), p.106-117
Hauptverfasser: Young, Katherine T., Smith, Colter, Krentz, Timothy M., Hitchcock, Dale A., Vogel, Eric M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue C
container_start_page 106
container_title Carbon (New York)
container_volume 176
creator Young, Katherine T.
Smith, Colter
Krentz, Timothy M.
Hitchcock, Dale A.
Vogel, Eric M.
description This work presents the results of gas concentration driven deuterium permeation experiments through chemical vapor deposited graphene on copper. Since the graphene is synthesized directly onto the copper, the permeation experiments are able to be performed over a large area (16.62 mm2) without the detrimental impact of transfer-induced tears and holes. Thus, permeation through intrinsic defects of the graphene are probed. The graphene-coated copper shows a reduction in permeation by a factor of ∼28 compared to copper alone. The permeation results are modeled with a composite permeation model. The permeation of copper alone is shown to be proportional to the square root of pressure, whereas the permeation through graphene samples is proportional to pressure. The graphene permeance follows an Arrhenius behavior. The room temperature pore permeation coefficients for the small and large grain graphene samples are ∼7.0 × 10−28±5.0 × 10−28 and ∼1.9 × 10−27±1.4 × 10−27 mol s−1 MPa−1, respectively. These results suggest that grain boundaries are not the main diffusion pathways, and instead other intrinsic defects in the graphene demonstrate less resistance to permeation. This study advances the fundamental understanding of the intrinsic permeation of chemical vapor deposited graphene, as well as the use of graphene in hydrogen isotope permeation barrier applications. [Display omitted]
doi_str_mv 10.1016/j.carbon.2021.01.127
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1809120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321001470</els_id><sourcerecordid>2511921843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-d2b94a404de64acddb42105d494cad892a1af21c547fb0237328b84dab33afe13</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpoNs0_6AH0Z7taCTtWr4USmg2gYVc0ksuYiyNay27kis5gc2vj7fuOadh4HuP9x5jX0HUIGBzva8d5i7FWgoJtYAaZPOBrcA0qlKmhY9sJYQw1UZK9Yl9LmU_v9qAXrGnbcZxoEi8nOI0UAmv5Hl34m6gY3B44C84psw9jamEKaTIsXDkw8nn9IciDyVNaSQ-Uj4S_gM6zDlQ_sIuejwUuvp_L9nv21-PN3fV7mF7f_NzVzktmqnysms1aqE9bTQ67zstQay9brVDb1qJgL0Et9ZN3wmpGiVNZ7THTinsCdQl-7b4pjIFW1yYyA0uxUhusmBEC1LM0PcFGnP6-0xlsvv0nOOcy8o1QCvBaDVTeqFcTqVk6u2YwxHzyYKw56nt3i5T2_PUVoCdp55lPxYZzTVf5urnFBQd-ZDPIXwK7xu8AdxPigE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511921843</pqid></control><display><type>article</type><title>Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier</title><source>Access via ScienceDirect (Elsevier)</source><creator>Young, Katherine T. ; Smith, Colter ; Krentz, Timothy M. ; Hitchcock, Dale A. ; Vogel, Eric M.</creator><creatorcontrib>Young, Katherine T. ; Smith, Colter ; Krentz, Timothy M. ; Hitchcock, Dale A. ; Vogel, Eric M.</creatorcontrib><description>This work presents the results of gas concentration driven deuterium permeation experiments through chemical vapor deposited graphene on copper. Since the graphene is synthesized directly onto the copper, the permeation experiments are able to be performed over a large area (16.62 mm2) without the detrimental impact of transfer-induced tears and holes. Thus, permeation through intrinsic defects of the graphene are probed. The graphene-coated copper shows a reduction in permeation by a factor of ∼28 compared to copper alone. The permeation results are modeled with a composite permeation model. The permeation of copper alone is shown to be proportional to the square root of pressure, whereas the permeation through graphene samples is proportional to pressure. The graphene permeance follows an Arrhenius behavior. The room temperature pore permeation coefficients for the small and large grain graphene samples are ∼7.0 × 10−28±5.0 × 10−28 and ∼1.9 × 10−27±1.4 × 10−27 mol s−1 MPa−1, respectively. These results suggest that grain boundaries are not the main diffusion pathways, and instead other intrinsic defects in the graphene demonstrate less resistance to permeation. This study advances the fundamental understanding of the intrinsic permeation of chemical vapor deposited graphene, as well as the use of graphene in hydrogen isotope permeation barrier applications. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.01.127</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Chemical synthesis ; Chemical vapor deposition ; Chemicals ; Copper ; Crystal defects ; Deuterium ; Gas permeation barrier ; Grain boundaries ; Graphene ; Hydrogen isotope permeation barrier ; Hydrogen isotopes ; Isotopes ; Penetration ; Permeation ; Permeation reduction factor ; Room temperature</subject><ispartof>Carbon (New York), 2021-05, Vol.176 (C), p.106-117</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-d2b94a404de64acddb42105d494cad892a1af21c547fb0237328b84dab33afe13</citedby><cites>FETCH-LOGICAL-c407t-d2b94a404de64acddb42105d494cad892a1af21c547fb0237328b84dab33afe13</cites><orcidid>0000-0002-8584-5576 ; 0000000285845576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.01.127$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1809120$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Katherine T.</creatorcontrib><creatorcontrib>Smith, Colter</creatorcontrib><creatorcontrib>Krentz, Timothy M.</creatorcontrib><creatorcontrib>Hitchcock, Dale A.</creatorcontrib><creatorcontrib>Vogel, Eric M.</creatorcontrib><title>Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier</title><title>Carbon (New York)</title><description>This work presents the results of gas concentration driven deuterium permeation experiments through chemical vapor deposited graphene on copper. Since the graphene is synthesized directly onto the copper, the permeation experiments are able to be performed over a large area (16.62 mm2) without the detrimental impact of transfer-induced tears and holes. Thus, permeation through intrinsic defects of the graphene are probed. The graphene-coated copper shows a reduction in permeation by a factor of ∼28 compared to copper alone. The permeation results are modeled with a composite permeation model. The permeation of copper alone is shown to be proportional to the square root of pressure, whereas the permeation through graphene samples is proportional to pressure. The graphene permeance follows an Arrhenius behavior. The room temperature pore permeation coefficients for the small and large grain graphene samples are ∼7.0 × 10−28±5.0 × 10−28 and ∼1.9 × 10−27±1.4 × 10−27 mol s−1 MPa−1, respectively. These results suggest that grain boundaries are not the main diffusion pathways, and instead other intrinsic defects in the graphene demonstrate less resistance to permeation. This study advances the fundamental understanding of the intrinsic permeation of chemical vapor deposited graphene, as well as the use of graphene in hydrogen isotope permeation barrier applications. [Display omitted]</description><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Chemicals</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>Deuterium</subject><subject>Gas permeation barrier</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Hydrogen isotope permeation barrier</subject><subject>Hydrogen isotopes</subject><subject>Isotopes</subject><subject>Penetration</subject><subject>Permeation</subject><subject>Permeation reduction factor</subject><subject>Room temperature</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVpoNs0_6AH0Z7taCTtWr4USmg2gYVc0ksuYiyNay27kis5gc2vj7fuOadh4HuP9x5jX0HUIGBzva8d5i7FWgoJtYAaZPOBrcA0qlKmhY9sJYQw1UZK9Yl9LmU_v9qAXrGnbcZxoEi8nOI0UAmv5Hl34m6gY3B44C84psw9jamEKaTIsXDkw8nn9IciDyVNaSQ-Uj4S_gM6zDlQ_sIuejwUuvp_L9nv21-PN3fV7mF7f_NzVzktmqnysms1aqE9bTQ67zstQay9brVDb1qJgL0Et9ZN3wmpGiVNZ7THTinsCdQl-7b4pjIFW1yYyA0uxUhusmBEC1LM0PcFGnP6-0xlsvv0nOOcy8o1QCvBaDVTeqFcTqVk6u2YwxHzyYKw56nt3i5T2_PUVoCdp55lPxYZzTVf5urnFBQd-ZDPIXwK7xu8AdxPigE</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Young, Katherine T.</creator><creator>Smith, Colter</creator><creator>Krentz, Timothy M.</creator><creator>Hitchcock, Dale A.</creator><creator>Vogel, Eric M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8584-5576</orcidid><orcidid>https://orcid.org/0000000285845576</orcidid></search><sort><creationdate>202105</creationdate><title>Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier</title><author>Young, Katherine T. ; Smith, Colter ; Krentz, Timothy M. ; Hitchcock, Dale A. ; Vogel, Eric M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-d2b94a404de64acddb42105d494cad892a1af21c547fb0237328b84dab33afe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Chemicals</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>Deuterium</topic><topic>Gas permeation barrier</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Hydrogen isotope permeation barrier</topic><topic>Hydrogen isotopes</topic><topic>Isotopes</topic><topic>Penetration</topic><topic>Permeation</topic><topic>Permeation reduction factor</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Katherine T.</creatorcontrib><creatorcontrib>Smith, Colter</creatorcontrib><creatorcontrib>Krentz, Timothy M.</creatorcontrib><creatorcontrib>Hitchcock, Dale A.</creatorcontrib><creatorcontrib>Vogel, Eric M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Katherine T.</au><au>Smith, Colter</au><au>Krentz, Timothy M.</au><au>Hitchcock, Dale A.</au><au>Vogel, Eric M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier</atitle><jtitle>Carbon (New York)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>176</volume><issue>C</issue><spage>106</spage><epage>117</epage><pages>106-117</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>This work presents the results of gas concentration driven deuterium permeation experiments through chemical vapor deposited graphene on copper. Since the graphene is synthesized directly onto the copper, the permeation experiments are able to be performed over a large area (16.62 mm2) without the detrimental impact of transfer-induced tears and holes. Thus, permeation through intrinsic defects of the graphene are probed. The graphene-coated copper shows a reduction in permeation by a factor of ∼28 compared to copper alone. The permeation results are modeled with a composite permeation model. The permeation of copper alone is shown to be proportional to the square root of pressure, whereas the permeation through graphene samples is proportional to pressure. The graphene permeance follows an Arrhenius behavior. The room temperature pore permeation coefficients for the small and large grain graphene samples are ∼7.0 × 10−28±5.0 × 10−28 and ∼1.9 × 10−27±1.4 × 10−27 mol s−1 MPa−1, respectively. These results suggest that grain boundaries are not the main diffusion pathways, and instead other intrinsic defects in the graphene demonstrate less resistance to permeation. This study advances the fundamental understanding of the intrinsic permeation of chemical vapor deposited graphene, as well as the use of graphene in hydrogen isotope permeation barrier applications. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.01.127</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8584-5576</orcidid><orcidid>https://orcid.org/0000000285845576</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-05, Vol.176 (C), p.106-117
issn 0008-6223
1873-3891
language eng
recordid cdi_osti_scitechconnect_1809120
source Access via ScienceDirect (Elsevier)
subjects Chemical synthesis
Chemical vapor deposition
Chemicals
Copper
Crystal defects
Deuterium
Gas permeation barrier
Grain boundaries
Graphene
Hydrogen isotope permeation barrier
Hydrogen isotopes
Isotopes
Penetration
Permeation
Permeation reduction factor
Room temperature
title Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20synthesized%20by%20chemical%20vapor%20deposition%20as%20a%20hydrogen%20isotope%20permeation%20barrier&rft.jtitle=Carbon%20(New%20York)&rft.au=Young,%20Katherine%20T.&rft.date=2021-05&rft.volume=176&rft.issue=C&rft.spage=106&rft.epage=117&rft.pages=106-117&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.01.127&rft_dat=%3Cproquest_osti_%3E2511921843%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511921843&rft_id=info:pmid/&rft_els_id=S0008622321001470&rfr_iscdi=true