Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy

Single-phase high- and medium-entropy alloys with face-centred cubic (fcc) structure can exhibit high tensile ductility 1 , 2 and excellent toughness 2 , 3 , but their room-temperature strengths are low 1 – 3 . Dislocation obstacles such as grain boundaries 4 , twin boundaries 5 , solute atoms 6 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-07, Vol.595 (7866), p.245-249
Hauptverfasser: Yang, Ying, Chen, Tianyi, Tan, Lizhen, Poplawsky, Jonathan D., An, Ke, Wang, Yanli, Samolyuk, German D., Littrell, Ken, Lupini, Andrew R., Borisevich, Albina, George, Easo P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 7866
container_start_page 245
container_title Nature (London)
container_volume 595
creator Yang, Ying
Chen, Tianyi
Tan, Lizhen
Poplawsky, Jonathan D.
An, Ke
Wang, Yanli
Samolyuk, German D.
Littrell, Ken
Lupini, Andrew R.
Borisevich, Albina
George, Easo P.
description Single-phase high- and medium-entropy alloys with face-centred cubic (fcc) structure can exhibit high tensile ductility 1 , 2 and excellent toughness 2 , 3 , but their room-temperature strengths are low 1 – 3 . Dislocation obstacles such as grain boundaries 4 , twin boundaries 5 , solute atoms 6 and precipitates 7 – 9 can increase strength. However, with few exceptions 8 – 11 , such obstacles tend to decrease ductility. Interestingly, precipitates can also hinder phase transformations 12 , 13 . Here, using a model, precipitate-strengthened, Fe–Ni–Al–Ti medium-entropy alloy, we demonstrate a strategy that combines these dual functions in a single alloy. The nanoprecipitates in our alloy, in addition to providing conventional strengthening of the matrix, also modulate its transformation from fcc-austenite to body-centred cubic (bcc) martensite, constraining it to remain as metastable fcc after quenching through the transformation temperature. During subsequent tensile testing, the matrix progressively transforms to bcc-martensite, enabling substantial increases in strength, work hardening and ductility. This use of nanoprecipitates exploits synergies between precipitation strengthening and transformation-induced plasticity, resulting in simultaneous enhancement of tensile strength and uniform elongation. Our findings demonstrate how synergistic deformation mechanisms can be deliberately activated, exactly when needed, by altering precipitate characteristics (such as size, spacing, and so on), along with the chemical driving force for phase transformation, to optimize strength and ductility. Increased strength and ductility in a medium-entropy alloy of Fe, Ni, Al and Ti is demonstrated using nanoprecipitates that simultaneously hinder phase transformation and block dislocation motion.
doi_str_mv 10.1038/s41586-021-03607-y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1808420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549731996</sourcerecordid><originalsourceid>FETCH-LOGICAL-o207t-1061b0235f7ba86a9213f23f8b7ffe40097e30c1dd39c3e4a91fe5381047cb833</originalsourceid><addsrcrecordid>eNpFkctO5DAQRS0EgubxAyxG0bA2lF1O7CwB8ZJAbGBtOY4DRmk7EzuL8PUEukesanGPrnTrEHLK4JwBqoskWKkqCpxRwAoknXfIiglZUVEpuUtWAFxRUFgdkMOUPgCgZFLskwMUHAUirsjTle-mYLOPwfRFMCEOo7N-8Nlkl4qURxfe8rsLhQlt0U4L2ftPV5hi7Vo_rakLeYzDXJi-j_Mx2etMn9zJ9h6R19ubl-t7-vh893B9-UgjB5kpg4o1wLHsZGNUZWrOsOPYqUZ2nRMAtXQIlrUt1hadMDXrXImKgZC2UYhH5O-mN6bsdbI-O_tuYwjOZs0UKMFhgc420DDGf5NLWX_EaVxmJs1LUUtkdV0t1J8tNTXLJD2Mfm3GWf9_0QLgBkhLFN7c-FvDQH-L0BsRehGhf0ToGb8AvD940g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549731996</pqid></control><display><type>article</type><title>Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy</title><source>SpringerLink Journals</source><source>Nature</source><creator>Yang, Ying ; Chen, Tianyi ; Tan, Lizhen ; Poplawsky, Jonathan D. ; An, Ke ; Wang, Yanli ; Samolyuk, German D. ; Littrell, Ken ; Lupini, Andrew R. ; Borisevich, Albina ; George, Easo P.</creator><creatorcontrib>Yang, Ying ; Chen, Tianyi ; Tan, Lizhen ; Poplawsky, Jonathan D. ; An, Ke ; Wang, Yanli ; Samolyuk, German D. ; Littrell, Ken ; Lupini, Andrew R. ; Borisevich, Albina ; George, Easo P. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Single-phase high- and medium-entropy alloys with face-centred cubic (fcc) structure can exhibit high tensile ductility 1 , 2 and excellent toughness 2 , 3 , but their room-temperature strengths are low 1 – 3 . Dislocation obstacles such as grain boundaries 4 , twin boundaries 5 , solute atoms 6 and precipitates 7 – 9 can increase strength. However, with few exceptions 8 – 11 , such obstacles tend to decrease ductility. Interestingly, precipitates can also hinder phase transformations 12 , 13 . Here, using a model, precipitate-strengthened, Fe–Ni–Al–Ti medium-entropy alloy, we demonstrate a strategy that combines these dual functions in a single alloy. The nanoprecipitates in our alloy, in addition to providing conventional strengthening of the matrix, also modulate its transformation from fcc-austenite to body-centred cubic (bcc) martensite, constraining it to remain as metastable fcc after quenching through the transformation temperature. During subsequent tensile testing, the matrix progressively transforms to bcc-martensite, enabling substantial increases in strength, work hardening and ductility. This use of nanoprecipitates exploits synergies between precipitation strengthening and transformation-induced plasticity, resulting in simultaneous enhancement of tensile strength and uniform elongation. Our findings demonstrate how synergistic deformation mechanisms can be deliberately activated, exactly when needed, by altering precipitate characteristics (such as size, spacing, and so on), along with the chemical driving force for phase transformation, to optimize strength and ductility. Increased strength and ductility in a medium-entropy alloy of Fe, Ni, Al and Ti is demonstrated using nanoprecipitates that simultaneously hinder phase transformation and block dislocation motion.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03607-y</identifier><identifier>PMID: 34234333</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/301/1023/303 ; Alloys ; Aluminum ; Barriers ; Deformation mechanisms ; Ductility ; Elongation ; Entropy ; Grain size ; High entropy alloys ; Humanities and Social Sciences ; Iron ; Martensite ; Martensitic transformations ; MATERIALS SCIENCE ; Medium entropy alloys ; multidisciplinary ; Nickel ; Phase transitions ; Precipitates ; Precipitation hardening ; Room temperature ; Science ; Science (multidisciplinary) ; Strengthening ; Temperature ; Tensile strength ; Tensile tests ; Transformation temperature ; Transmission electron microscopy ; Work hardening ; Yield stress</subject><ispartof>Nature (London), 2021-07, Vol.595 (7866), p.245-249</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>Copyright Nature Publishing Group Jul 8, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-o207t-1061b0235f7ba86a9213f23f8b7ffe40097e30c1dd39c3e4a91fe5381047cb833</cites><orcidid>0000-0002-4272-7043 ; 0000-0002-1874-7925 ; 0000-0002-6093-429X ; 0000-0003-2308-8618 ; 0000-0001-6480-2254 ; 0000-0001-9898-9694 ; 0000000261603476 ; 0000000234182450 ; 000000026093429X ; 0000000168778255 ; 0000000198989694 ; 0000000239538460 ; 0000000164802254 ; 0000000218747925 ; 0000000323088618 ; 0000000242727043 ; 000000032880824X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03607-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03607-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34234333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1808420$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Chen, Tianyi</creatorcontrib><creatorcontrib>Tan, Lizhen</creatorcontrib><creatorcontrib>Poplawsky, Jonathan D.</creatorcontrib><creatorcontrib>An, Ke</creatorcontrib><creatorcontrib>Wang, Yanli</creatorcontrib><creatorcontrib>Samolyuk, German D.</creatorcontrib><creatorcontrib>Littrell, Ken</creatorcontrib><creatorcontrib>Lupini, Andrew R.</creatorcontrib><creatorcontrib>Borisevich, Albina</creatorcontrib><creatorcontrib>George, Easo P.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Single-phase high- and medium-entropy alloys with face-centred cubic (fcc) structure can exhibit high tensile ductility 1 , 2 and excellent toughness 2 , 3 , but their room-temperature strengths are low 1 – 3 . Dislocation obstacles such as grain boundaries 4 , twin boundaries 5 , solute atoms 6 and precipitates 7 – 9 can increase strength. However, with few exceptions 8 – 11 , such obstacles tend to decrease ductility. Interestingly, precipitates can also hinder phase transformations 12 , 13 . Here, using a model, precipitate-strengthened, Fe–Ni–Al–Ti medium-entropy alloy, we demonstrate a strategy that combines these dual functions in a single alloy. The nanoprecipitates in our alloy, in addition to providing conventional strengthening of the matrix, also modulate its transformation from fcc-austenite to body-centred cubic (bcc) martensite, constraining it to remain as metastable fcc after quenching through the transformation temperature. During subsequent tensile testing, the matrix progressively transforms to bcc-martensite, enabling substantial increases in strength, work hardening and ductility. This use of nanoprecipitates exploits synergies between precipitation strengthening and transformation-induced plasticity, resulting in simultaneous enhancement of tensile strength and uniform elongation. Our findings demonstrate how synergistic deformation mechanisms can be deliberately activated, exactly when needed, by altering precipitate characteristics (such as size, spacing, and so on), along with the chemical driving force for phase transformation, to optimize strength and ductility. Increased strength and ductility in a medium-entropy alloy of Fe, Ni, Al and Ti is demonstrated using nanoprecipitates that simultaneously hinder phase transformation and block dislocation motion.</description><subject>639/301/1023/1026</subject><subject>639/301/1023/303</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Barriers</subject><subject>Deformation mechanisms</subject><subject>Ductility</subject><subject>Elongation</subject><subject>Entropy</subject><subject>Grain size</subject><subject>High entropy alloys</subject><subject>Humanities and Social Sciences</subject><subject>Iron</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>MATERIALS SCIENCE</subject><subject>Medium entropy alloys</subject><subject>multidisciplinary</subject><subject>Nickel</subject><subject>Phase transitions</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Strengthening</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Transformation temperature</subject><subject>Transmission electron microscopy</subject><subject>Work hardening</subject><subject>Yield stress</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkctO5DAQRS0EgubxAyxG0bA2lF1O7CwB8ZJAbGBtOY4DRmk7EzuL8PUEukesanGPrnTrEHLK4JwBqoskWKkqCpxRwAoknXfIiglZUVEpuUtWAFxRUFgdkMOUPgCgZFLskwMUHAUirsjTle-mYLOPwfRFMCEOo7N-8Nlkl4qURxfe8rsLhQlt0U4L2ftPV5hi7Vo_rakLeYzDXJi-j_Mx2etMn9zJ9h6R19ubl-t7-vh893B9-UgjB5kpg4o1wLHsZGNUZWrOsOPYqUZ2nRMAtXQIlrUt1hadMDXrXImKgZC2UYhH5O-mN6bsdbI-O_tuYwjOZs0UKMFhgc420DDGf5NLWX_EaVxmJs1LUUtkdV0t1J8tNTXLJD2Mfm3GWf9_0QLgBkhLFN7c-FvDQH-L0BsRehGhf0ToGb8AvD940g</recordid><startdate>20210708</startdate><enddate>20210708</enddate><creator>Yang, Ying</creator><creator>Chen, Tianyi</creator><creator>Tan, Lizhen</creator><creator>Poplawsky, Jonathan D.</creator><creator>An, Ke</creator><creator>Wang, Yanli</creator><creator>Samolyuk, German D.</creator><creator>Littrell, Ken</creator><creator>Lupini, Andrew R.</creator><creator>Borisevich, Albina</creator><creator>George, Easo P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4272-7043</orcidid><orcidid>https://orcid.org/0000-0002-1874-7925</orcidid><orcidid>https://orcid.org/0000-0002-6093-429X</orcidid><orcidid>https://orcid.org/0000-0003-2308-8618</orcidid><orcidid>https://orcid.org/0000-0001-6480-2254</orcidid><orcidid>https://orcid.org/0000-0001-9898-9694</orcidid><orcidid>https://orcid.org/0000000261603476</orcidid><orcidid>https://orcid.org/0000000234182450</orcidid><orcidid>https://orcid.org/000000026093429X</orcidid><orcidid>https://orcid.org/0000000168778255</orcidid><orcidid>https://orcid.org/0000000198989694</orcidid><orcidid>https://orcid.org/0000000239538460</orcidid><orcidid>https://orcid.org/0000000164802254</orcidid><orcidid>https://orcid.org/0000000218747925</orcidid><orcidid>https://orcid.org/0000000323088618</orcidid><orcidid>https://orcid.org/0000000242727043</orcidid><orcidid>https://orcid.org/000000032880824X</orcidid></search><sort><creationdate>20210708</creationdate><title>Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy</title><author>Yang, Ying ; Chen, Tianyi ; Tan, Lizhen ; Poplawsky, Jonathan D. ; An, Ke ; Wang, Yanli ; Samolyuk, German D. ; Littrell, Ken ; Lupini, Andrew R. ; Borisevich, Albina ; George, Easo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o207t-1061b0235f7ba86a9213f23f8b7ffe40097e30c1dd39c3e4a91fe5381047cb833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/1023/1026</topic><topic>639/301/1023/303</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Barriers</topic><topic>Deformation mechanisms</topic><topic>Ductility</topic><topic>Elongation</topic><topic>Entropy</topic><topic>Grain size</topic><topic>High entropy alloys</topic><topic>Humanities and Social Sciences</topic><topic>Iron</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>MATERIALS SCIENCE</topic><topic>Medium entropy alloys</topic><topic>multidisciplinary</topic><topic>Nickel</topic><topic>Phase transitions</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Strengthening</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Transformation temperature</topic><topic>Transmission electron microscopy</topic><topic>Work hardening</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Chen, Tianyi</creatorcontrib><creatorcontrib>Tan, Lizhen</creatorcontrib><creatorcontrib>Poplawsky, Jonathan D.</creatorcontrib><creatorcontrib>An, Ke</creatorcontrib><creatorcontrib>Wang, Yanli</creatorcontrib><creatorcontrib>Samolyuk, German D.</creatorcontrib><creatorcontrib>Littrell, Ken</creatorcontrib><creatorcontrib>Lupini, Andrew R.</creatorcontrib><creatorcontrib>Borisevich, Albina</creatorcontrib><creatorcontrib>George, Easo P.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ying</au><au>Chen, Tianyi</au><au>Tan, Lizhen</au><au>Poplawsky, Jonathan D.</au><au>An, Ke</au><au>Wang, Yanli</au><au>Samolyuk, German D.</au><au>Littrell, Ken</au><au>Lupini, Andrew R.</au><au>Borisevich, Albina</au><au>George, Easo P.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-07-08</date><risdate>2021</risdate><volume>595</volume><issue>7866</issue><spage>245</spage><epage>249</epage><pages>245-249</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Single-phase high- and medium-entropy alloys with face-centred cubic (fcc) structure can exhibit high tensile ductility 1 , 2 and excellent toughness 2 , 3 , but their room-temperature strengths are low 1 – 3 . Dislocation obstacles such as grain boundaries 4 , twin boundaries 5 , solute atoms 6 and precipitates 7 – 9 can increase strength. However, with few exceptions 8 – 11 , such obstacles tend to decrease ductility. Interestingly, precipitates can also hinder phase transformations 12 , 13 . Here, using a model, precipitate-strengthened, Fe–Ni–Al–Ti medium-entropy alloy, we demonstrate a strategy that combines these dual functions in a single alloy. The nanoprecipitates in our alloy, in addition to providing conventional strengthening of the matrix, also modulate its transformation from fcc-austenite to body-centred cubic (bcc) martensite, constraining it to remain as metastable fcc after quenching through the transformation temperature. During subsequent tensile testing, the matrix progressively transforms to bcc-martensite, enabling substantial increases in strength, work hardening and ductility. This use of nanoprecipitates exploits synergies between precipitation strengthening and transformation-induced plasticity, resulting in simultaneous enhancement of tensile strength and uniform elongation. Our findings demonstrate how synergistic deformation mechanisms can be deliberately activated, exactly when needed, by altering precipitate characteristics (such as size, spacing, and so on), along with the chemical driving force for phase transformation, to optimize strength and ductility. Increased strength and ductility in a medium-entropy alloy of Fe, Ni, Al and Ti is demonstrated using nanoprecipitates that simultaneously hinder phase transformation and block dislocation motion.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34234333</pmid><doi>10.1038/s41586-021-03607-y</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4272-7043</orcidid><orcidid>https://orcid.org/0000-0002-1874-7925</orcidid><orcidid>https://orcid.org/0000-0002-6093-429X</orcidid><orcidid>https://orcid.org/0000-0003-2308-8618</orcidid><orcidid>https://orcid.org/0000-0001-6480-2254</orcidid><orcidid>https://orcid.org/0000-0001-9898-9694</orcidid><orcidid>https://orcid.org/0000000261603476</orcidid><orcidid>https://orcid.org/0000000234182450</orcidid><orcidid>https://orcid.org/000000026093429X</orcidid><orcidid>https://orcid.org/0000000168778255</orcidid><orcidid>https://orcid.org/0000000198989694</orcidid><orcidid>https://orcid.org/0000000239538460</orcidid><orcidid>https://orcid.org/0000000164802254</orcidid><orcidid>https://orcid.org/0000000218747925</orcidid><orcidid>https://orcid.org/0000000323088618</orcidid><orcidid>https://orcid.org/0000000242727043</orcidid><orcidid>https://orcid.org/000000032880824X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-07, Vol.595 (7866), p.245-249
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1808420
source SpringerLink Journals; Nature
subjects 639/301/1023/1026
639/301/1023/303
Alloys
Aluminum
Barriers
Deformation mechanisms
Ductility
Elongation
Entropy
Grain size
High entropy alloys
Humanities and Social Sciences
Iron
Martensite
Martensitic transformations
MATERIALS SCIENCE
Medium entropy alloys
multidisciplinary
Nickel
Phase transitions
Precipitates
Precipitation hardening
Room temperature
Science
Science (multidisciplinary)
Strengthening
Temperature
Tensile strength
Tensile tests
Transformation temperature
Transmission electron microscopy
Work hardening
Yield stress
title Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifunctional%20nanoprecipitates%20strengthen%20and%20ductilize%20a%20medium-entropy%20alloy&rft.jtitle=Nature%20(London)&rft.au=Yang,%20Ying&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-07-08&rft.volume=595&rft.issue=7866&rft.spage=245&rft.epage=249&rft.pages=245-249&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03607-y&rft_dat=%3Cproquest_osti_%3E2549731996%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549731996&rft_id=info:pmid/34234333&rfr_iscdi=true