Electrochemical ion insertion from the atomic to the device scale
Electrochemical ion insertion involves coupled ion–electron transfer reactions, transport of guest species and redox of the host. The hosts are typically anisotropic solids with 2D conduction planes but can also be materials with 1D or isotropic transport pathways. These insertion compounds have tra...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Materials 2021-09, Vol.6 (9), p.847-867 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 867 |
---|---|
container_issue | 9 |
container_start_page | 847 |
container_title | Nature reviews. Materials |
container_volume | 6 |
creator | Sood, Aditya Poletayev, Andrey D. Cogswell, Daniel A. Csernica, Peter M. Mefford, J. Tyler Fraggedakis, Dimitrios Toney, Michael F. Lindenberg, Aaron M. Bazant, Martin Z. Chueh, William C. |
description | Electrochemical ion insertion involves coupled ion–electron transfer reactions, transport of guest species and redox of the host. The hosts are typically anisotropic solids with 2D conduction planes but can also be materials with 1D or isotropic transport pathways. These insertion compounds have traditionally been studied in the context of energy storage but also find extensive applications in electrocatalysis, optoelectronics and computing. Recent developments in operando, ultrafast and high-resolution characterization methods, as well as accurate theoretical simulation methods, have led to a renaissance in the understanding of ion-insertion compounds. In this Review, we present a unified framework for understanding insertion compounds across timescales and length scales ranging from atomic to device levels. Using graphite, transition metal dichalcogenides, layered oxides, oxyhydroxides and olivines as examples, we explore commonalities in these materials in terms of point defects, interfacial reactions and phase transformations. We illustrate similarities in the operating principles of various ion-insertion devices, ranging from batteries and electrocatalysts to electrochromics and thermal transistors, with the goal of unifying research across disciplinary boundaries.
Electrochemical ion insertion is rapidly emerging as a powerful materials design strategy. This Review discusses how ion insertion enables reversible transformation and switching of physico-chemical properties, the role of defects and interfacial reactions, and opportunities for ultrafast ionic control. |
doi_str_mv | 10.1038/s41578-021-00314-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1808300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568814102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-cba92d9043cc6ba2306d7fbf5c871d241e5826382301f56d65337468f4a173e3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgqf0DnhY9R_PytdljKdUKBS-9hzSb2C3tpiap0H9v2hX05OnNY2Ye8waheyBPQJh6ThxErTChgAlhwPHpCo0oEQorzurrP_gWTVLaEkKgYbxRdISm852zOQa7cfvOml3Vhb7q-uRiPiMfw77KG1eZHApf5XDZWvfVWVelYnB36MabXXKTnzlGq5f5arbAy_fXt9l0iS0HmrFdm4a2DeHMWrk2lBHZ1n7thVU1tJSDE4pKpgoBXshWCsZqLpXnBmrm2Bg9DGdDyp1OtsvObmzo-xJfgyKKld_H6HEQHWL4PLqU9TYcY19iaSqkUsCB0KKig8rGkFJ0Xh9itzfxpIHoc6N6aFSXRvWlUX0qJjaYUhH3Hy7-nv7H9Q2IbHdS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568814102</pqid></control><display><type>article</type><title>Electrochemical ion insertion from the atomic to the device scale</title><source>Alma/SFX Local Collection</source><creator>Sood, Aditya ; Poletayev, Andrey D. ; Cogswell, Daniel A. ; Csernica, Peter M. ; Mefford, J. Tyler ; Fraggedakis, Dimitrios ; Toney, Michael F. ; Lindenberg, Aaron M. ; Bazant, Martin Z. ; Chueh, William C.</creator><creatorcontrib>Sood, Aditya ; Poletayev, Andrey D. ; Cogswell, Daniel A. ; Csernica, Peter M. ; Mefford, J. Tyler ; Fraggedakis, Dimitrios ; Toney, Michael F. ; Lindenberg, Aaron M. ; Bazant, Martin Z. ; Chueh, William C. ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Electrochemical ion insertion involves coupled ion–electron transfer reactions, transport of guest species and redox of the host. The hosts are typically anisotropic solids with 2D conduction planes but can also be materials with 1D or isotropic transport pathways. These insertion compounds have traditionally been studied in the context of energy storage but also find extensive applications in electrocatalysis, optoelectronics and computing. Recent developments in operando, ultrafast and high-resolution characterization methods, as well as accurate theoretical simulation methods, have led to a renaissance in the understanding of ion-insertion compounds. In this Review, we present a unified framework for understanding insertion compounds across timescales and length scales ranging from atomic to device levels. Using graphite, transition metal dichalcogenides, layered oxides, oxyhydroxides and olivines as examples, we explore commonalities in these materials in terms of point defects, interfacial reactions and phase transformations. We illustrate similarities in the operating principles of various ion-insertion devices, ranging from batteries and electrocatalysts to electrochromics and thermal transistors, with the goal of unifying research across disciplinary boundaries.
Electrochemical ion insertion is rapidly emerging as a powerful materials design strategy. This Review discusses how ion insertion enables reversible transformation and switching of physico-chemical properties, the role of defects and interfacial reactions, and opportunities for ultrafast ionic control.</description><identifier>ISSN: 2058-8437</identifier><identifier>EISSN: 2058-8437</identifier><identifier>DOI: 10.1038/s41578-021-00314-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/299/161/891 ; 639/301/299/886 ; 639/766/530/951 ; 639/925/930/12 ; Biomaterials ; Chemical properties ; Chemical reactions ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrocatalysts ; Electron transfer ; Energy storage ; Insertion ; Interface reactions ; MATERIALS SCIENCE ; Nanotechnology ; Optical and Electronic Materials ; Optoelectronics ; Phase transitions ; Point defects ; Review Article ; Transistors ; Transition metal compounds</subject><ispartof>Nature reviews. Materials, 2021-09, Vol.6 (9), p.847-867</ispartof><rights>Springer Nature Limited 2021</rights><rights>Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-cba92d9043cc6ba2306d7fbf5c871d241e5826382301f56d65337468f4a173e3</citedby><cites>FETCH-LOGICAL-c412t-cba92d9043cc6ba2306d7fbf5c871d241e5826382301f56d65337468f4a173e3</cites><orcidid>0000-0003-3233-7161 ; 0000-0003-3301-6255 ; 0000-0002-7066-3470 ; 0000-0001-8027-9635 ; 0000-0002-8200-4501 ; 0000-0002-4319-666X ; 0000-0002-7513-1166 ; 0000-0003-4259-1614 ; 0000-0003-4965-4147 ; 0000-0002-7892-8963 ; 0000000278928963 ; 0000000332337161 ; 0000000275131166 ; 0000000349654147 ; 0000000333016255 ; 0000000270663470 ; 0000000342591614 ; 000000024319666X ; 0000000180279635 ; 0000000282004501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1808300$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sood, Aditya</creatorcontrib><creatorcontrib>Poletayev, Andrey D.</creatorcontrib><creatorcontrib>Cogswell, Daniel A.</creatorcontrib><creatorcontrib>Csernica, Peter M.</creatorcontrib><creatorcontrib>Mefford, J. Tyler</creatorcontrib><creatorcontrib>Fraggedakis, Dimitrios</creatorcontrib><creatorcontrib>Toney, Michael F.</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>Bazant, Martin Z.</creatorcontrib><creatorcontrib>Chueh, William C.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Electrochemical ion insertion from the atomic to the device scale</title><title>Nature reviews. Materials</title><addtitle>Nat Rev Mater</addtitle><description>Electrochemical ion insertion involves coupled ion–electron transfer reactions, transport of guest species and redox of the host. The hosts are typically anisotropic solids with 2D conduction planes but can also be materials with 1D or isotropic transport pathways. These insertion compounds have traditionally been studied in the context of energy storage but also find extensive applications in electrocatalysis, optoelectronics and computing. Recent developments in operando, ultrafast and high-resolution characterization methods, as well as accurate theoretical simulation methods, have led to a renaissance in the understanding of ion-insertion compounds. In this Review, we present a unified framework for understanding insertion compounds across timescales and length scales ranging from atomic to device levels. Using graphite, transition metal dichalcogenides, layered oxides, oxyhydroxides and olivines as examples, we explore commonalities in these materials in terms of point defects, interfacial reactions and phase transformations. We illustrate similarities in the operating principles of various ion-insertion devices, ranging from batteries and electrocatalysts to electrochromics and thermal transistors, with the goal of unifying research across disciplinary boundaries.
Electrochemical ion insertion is rapidly emerging as a powerful materials design strategy. This Review discusses how ion insertion enables reversible transformation and switching of physico-chemical properties, the role of defects and interfacial reactions, and opportunities for ultrafast ionic control.</description><subject>639/301/1005/1007</subject><subject>639/301/299/161/891</subject><subject>639/301/299/886</subject><subject>639/766/530/951</subject><subject>639/925/930/12</subject><subject>Biomaterials</subject><subject>Chemical properties</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>Insertion</subject><subject>Interface reactions</subject><subject>MATERIALS SCIENCE</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Phase transitions</subject><subject>Point defects</subject><subject>Review Article</subject><subject>Transistors</subject><subject>Transition metal compounds</subject><issn>2058-8437</issn><issn>2058-8437</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEUDKJgqf0DnhY9R_PytdljKdUKBS-9hzSb2C3tpiap0H9v2hX05OnNY2Ye8waheyBPQJh6ThxErTChgAlhwPHpCo0oEQorzurrP_gWTVLaEkKgYbxRdISm852zOQa7cfvOml3Vhb7q-uRiPiMfw77KG1eZHApf5XDZWvfVWVelYnB36MabXXKTnzlGq5f5arbAy_fXt9l0iS0HmrFdm4a2DeHMWrk2lBHZ1n7thVU1tJSDE4pKpgoBXshWCsZqLpXnBmrm2Bg9DGdDyp1OtsvObmzo-xJfgyKKld_H6HEQHWL4PLqU9TYcY19iaSqkUsCB0KKig8rGkFJ0Xh9itzfxpIHoc6N6aFSXRvWlUX0qJjaYUhH3Hy7-nv7H9Q2IbHdS</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sood, Aditya</creator><creator>Poletayev, Andrey D.</creator><creator>Cogswell, Daniel A.</creator><creator>Csernica, Peter M.</creator><creator>Mefford, J. Tyler</creator><creator>Fraggedakis, Dimitrios</creator><creator>Toney, Michael F.</creator><creator>Lindenberg, Aaron M.</creator><creator>Bazant, Martin Z.</creator><creator>Chueh, William C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3233-7161</orcidid><orcidid>https://orcid.org/0000-0003-3301-6255</orcidid><orcidid>https://orcid.org/0000-0002-7066-3470</orcidid><orcidid>https://orcid.org/0000-0001-8027-9635</orcidid><orcidid>https://orcid.org/0000-0002-8200-4501</orcidid><orcidid>https://orcid.org/0000-0002-4319-666X</orcidid><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0003-4259-1614</orcidid><orcidid>https://orcid.org/0000-0003-4965-4147</orcidid><orcidid>https://orcid.org/0000-0002-7892-8963</orcidid><orcidid>https://orcid.org/0000000278928963</orcidid><orcidid>https://orcid.org/0000000332337161</orcidid><orcidid>https://orcid.org/0000000275131166</orcidid><orcidid>https://orcid.org/0000000349654147</orcidid><orcidid>https://orcid.org/0000000333016255</orcidid><orcidid>https://orcid.org/0000000270663470</orcidid><orcidid>https://orcid.org/0000000342591614</orcidid><orcidid>https://orcid.org/000000024319666X</orcidid><orcidid>https://orcid.org/0000000180279635</orcidid><orcidid>https://orcid.org/0000000282004501</orcidid></search><sort><creationdate>20210901</creationdate><title>Electrochemical ion insertion from the atomic to the device scale</title><author>Sood, Aditya ; Poletayev, Andrey D. ; Cogswell, Daniel A. ; Csernica, Peter M. ; Mefford, J. Tyler ; Fraggedakis, Dimitrios ; Toney, Michael F. ; Lindenberg, Aaron M. ; Bazant, Martin Z. ; Chueh, William C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-cba92d9043cc6ba2306d7fbf5c871d241e5826382301f56d65337468f4a173e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/1005/1007</topic><topic>639/301/299/161/891</topic><topic>639/301/299/886</topic><topic>639/766/530/951</topic><topic>639/925/930/12</topic><topic>Biomaterials</topic><topic>Chemical properties</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>Insertion</topic><topic>Interface reactions</topic><topic>MATERIALS SCIENCE</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Phase transitions</topic><topic>Point defects</topic><topic>Review Article</topic><topic>Transistors</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sood, Aditya</creatorcontrib><creatorcontrib>Poletayev, Andrey D.</creatorcontrib><creatorcontrib>Cogswell, Daniel A.</creatorcontrib><creatorcontrib>Csernica, Peter M.</creatorcontrib><creatorcontrib>Mefford, J. Tyler</creatorcontrib><creatorcontrib>Fraggedakis, Dimitrios</creatorcontrib><creatorcontrib>Toney, Michael F.</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>Bazant, Martin Z.</creatorcontrib><creatorcontrib>Chueh, William C.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature reviews. Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sood, Aditya</au><au>Poletayev, Andrey D.</au><au>Cogswell, Daniel A.</au><au>Csernica, Peter M.</au><au>Mefford, J. Tyler</au><au>Fraggedakis, Dimitrios</au><au>Toney, Michael F.</au><au>Lindenberg, Aaron M.</au><au>Bazant, Martin Z.</au><au>Chueh, William C.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical ion insertion from the atomic to the device scale</atitle><jtitle>Nature reviews. Materials</jtitle><stitle>Nat Rev Mater</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>6</volume><issue>9</issue><spage>847</spage><epage>867</epage><pages>847-867</pages><issn>2058-8437</issn><eissn>2058-8437</eissn><abstract>Electrochemical ion insertion involves coupled ion–electron transfer reactions, transport of guest species and redox of the host. The hosts are typically anisotropic solids with 2D conduction planes but can also be materials with 1D or isotropic transport pathways. These insertion compounds have traditionally been studied in the context of energy storage but also find extensive applications in electrocatalysis, optoelectronics and computing. Recent developments in operando, ultrafast and high-resolution characterization methods, as well as accurate theoretical simulation methods, have led to a renaissance in the understanding of ion-insertion compounds. In this Review, we present a unified framework for understanding insertion compounds across timescales and length scales ranging from atomic to device levels. Using graphite, transition metal dichalcogenides, layered oxides, oxyhydroxides and olivines as examples, we explore commonalities in these materials in terms of point defects, interfacial reactions and phase transformations. We illustrate similarities in the operating principles of various ion-insertion devices, ranging from batteries and electrocatalysts to electrochromics and thermal transistors, with the goal of unifying research across disciplinary boundaries.
Electrochemical ion insertion is rapidly emerging as a powerful materials design strategy. This Review discusses how ion insertion enables reversible transformation and switching of physico-chemical properties, the role of defects and interfacial reactions, and opportunities for ultrafast ionic control.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41578-021-00314-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3233-7161</orcidid><orcidid>https://orcid.org/0000-0003-3301-6255</orcidid><orcidid>https://orcid.org/0000-0002-7066-3470</orcidid><orcidid>https://orcid.org/0000-0001-8027-9635</orcidid><orcidid>https://orcid.org/0000-0002-8200-4501</orcidid><orcidid>https://orcid.org/0000-0002-4319-666X</orcidid><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0003-4259-1614</orcidid><orcidid>https://orcid.org/0000-0003-4965-4147</orcidid><orcidid>https://orcid.org/0000-0002-7892-8963</orcidid><orcidid>https://orcid.org/0000000278928963</orcidid><orcidid>https://orcid.org/0000000332337161</orcidid><orcidid>https://orcid.org/0000000275131166</orcidid><orcidid>https://orcid.org/0000000349654147</orcidid><orcidid>https://orcid.org/0000000333016255</orcidid><orcidid>https://orcid.org/0000000270663470</orcidid><orcidid>https://orcid.org/0000000342591614</orcidid><orcidid>https://orcid.org/000000024319666X</orcidid><orcidid>https://orcid.org/0000000180279635</orcidid><orcidid>https://orcid.org/0000000282004501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-8437 |
ispartof | Nature reviews. Materials, 2021-09, Vol.6 (9), p.847-867 |
issn | 2058-8437 2058-8437 |
language | eng |
recordid | cdi_osti_scitechconnect_1808300 |
source | Alma/SFX Local Collection |
subjects | 639/301/1005/1007 639/301/299/161/891 639/301/299/886 639/766/530/951 639/925/930/12 Biomaterials Chemical properties Chemical reactions Chemistry and Materials Science Condensed Matter Physics Electrocatalysts Electron transfer Energy storage Insertion Interface reactions MATERIALS SCIENCE Nanotechnology Optical and Electronic Materials Optoelectronics Phase transitions Point defects Review Article Transistors Transition metal compounds |
title | Electrochemical ion insertion from the atomic to the device scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20ion%20insertion%20from%20the%20atomic%20to%20the%20device%20scale&rft.jtitle=Nature%20reviews.%20Materials&rft.au=Sood,%20Aditya&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-09-01&rft.volume=6&rft.issue=9&rft.spage=847&rft.epage=867&rft.pages=847-867&rft.issn=2058-8437&rft.eissn=2058-8437&rft_id=info:doi/10.1038/s41578-021-00314-y&rft_dat=%3Cproquest_osti_%3E2568814102%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568814102&rft_id=info:pmid/&rfr_iscdi=true |