A stable low-temperature H2-production catalyst by crowding Pt on α-MoC

The water–gas shift (WGS) reaction is an industrially important source of pure hydrogen (H 2 ) at the expense of carbon monoxide and water 1 , 2 . This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures 3 . Here we de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-01, Vol.589 (7842), p.396-401
Hauptverfasser: Zhang, Xiao, Zhang, Mengtao, Deng, Yuchen, Xu, Mingquan, Artiglia, Luca, Wen, Wen, Gao, Rui, Chen, Bingbing, Yao, Siyu, Zhang, Xiaochen, Peng, Mi, Yan, Jie, Li, Aowen, Jiang, Zheng, Gao, Xingyu, Cao, Sufeng, Yang, Ce, Kropf, A. Jeremy, Shi, Jinan, Xie, Jinglin, Bi, Mingshu, van Bokhoven, Jeroen A., Li, Yong-Wang, Wen, Xiaodong, Flytzani-Stephanopoulos, Maria, Shi, Chuan, Zhou, Wu, Ma, Ding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 7842
container_start_page 396
container_title Nature (London)
container_volume 589
creator Zhang, Xiao
Zhang, Mengtao
Deng, Yuchen
Xu, Mingquan
Artiglia, Luca
Wen, Wen
Gao, Rui
Chen, Bingbing
Yao, Siyu
Zhang, Xiaochen
Peng, Mi
Yan, Jie
Li, Aowen
Jiang, Zheng
Gao, Xingyu
Cao, Sufeng
Yang, Ce
Kropf, A. Jeremy
Shi, Jinan
Xie, Jinglin
Bi, Mingshu
van Bokhoven, Jeroen A.
Li, Yong-Wang
Wen, Xiaodong
Flytzani-Stephanopoulos, Maria
Shi, Chuan
Zhou, Wu
Ma, Ding
description The water–gas shift (WGS) reaction is an industrially important source of pure hydrogen (H 2 ) at the expense of carbon monoxide and water 1 , 2 . This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures 3 . Here we demonstrate that the structure (Pt 1 –Pt n )/α-MoC, where isolated platinum atoms (Pt 1 ) and subnanometre platinum clusters (Pt n ) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt 1 and Pt n species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4 ), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production. A stable, low-temperature water–gas shift catalyst is achieved by crowding platinum atoms and clusters on α-molybdenum carbide; the crowding protects the support from oxidation that would cause catalyst deactivation.
doi_str_mv 10.1038/s41586-020-03130-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1808272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479742946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3386-a7c52ba55d3cfb78f2c6f54f4b0ce852e7d62de2e86d1fd2868e9d0c28af25943</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhS0EEuXnAqwi2LAx-C-2u0QVUKQiWMDacpwJBKVxsR1VPRYX4Uy4BAmJBatZzDdv5s1D6ISSC0q4voyCllpiwggmnHKC5Q6aUKEkFlKrXTQhhGlMNJf76CDGN0JISZWYoPlVEZOtOig6v8YJlisINg0BijnDq-DrwaXW94WzyXabmIpqU7jg13XbvxSPqcitzw9872dHaK-xXYTjn3qInm-un2ZzvHi4vZtdLbDjPF9olStZZcuy5q6plG6Yk00pGlERB7pkoGrJamCgZU2bmmmpYVoTx7RtWDkV_BCdjro-ptZE1yZwr873PbhkqCaaKZah8xHKDt4HiMks2-ig62wPfoiGCTVVgk2FzOjZH_TND6HPFjKl85-UotutbKSy9xgDNGYV2qUNG0OJ2SZgxgRMTsB8J2C20nwcihnuXyD8Sv8z9QWZKofK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480007714</pqid></control><display><type>article</type><title>A stable low-temperature H2-production catalyst by crowding Pt on α-MoC</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Zhang, Xiao ; Zhang, Mengtao ; Deng, Yuchen ; Xu, Mingquan ; Artiglia, Luca ; Wen, Wen ; Gao, Rui ; Chen, Bingbing ; Yao, Siyu ; Zhang, Xiaochen ; Peng, Mi ; Yan, Jie ; Li, Aowen ; Jiang, Zheng ; Gao, Xingyu ; Cao, Sufeng ; Yang, Ce ; Kropf, A. Jeremy ; Shi, Jinan ; Xie, Jinglin ; Bi, Mingshu ; van Bokhoven, Jeroen A. ; Li, Yong-Wang ; Wen, Xiaodong ; Flytzani-Stephanopoulos, Maria ; Shi, Chuan ; Zhou, Wu ; Ma, Ding</creator><creatorcontrib>Zhang, Xiao ; Zhang, Mengtao ; Deng, Yuchen ; Xu, Mingquan ; Artiglia, Luca ; Wen, Wen ; Gao, Rui ; Chen, Bingbing ; Yao, Siyu ; Zhang, Xiaochen ; Peng, Mi ; Yan, Jie ; Li, Aowen ; Jiang, Zheng ; Gao, Xingyu ; Cao, Sufeng ; Yang, Ce ; Kropf, A. Jeremy ; Shi, Jinan ; Xie, Jinglin ; Bi, Mingshu ; van Bokhoven, Jeroen A. ; Li, Yong-Wang ; Wen, Xiaodong ; Flytzani-Stephanopoulos, Maria ; Shi, Chuan ; Zhou, Wu ; Ma, Ding ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>The water–gas shift (WGS) reaction is an industrially important source of pure hydrogen (H 2 ) at the expense of carbon monoxide and water 1 , 2 . This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures 3 . Here we demonstrate that the structure (Pt 1 –Pt n )/α-MoC, where isolated platinum atoms (Pt 1 ) and subnanometre platinum clusters (Pt n ) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt 1 and Pt n species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4 ), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production. A stable, low-temperature water–gas shift catalyst is achieved by crowding platinum atoms and clusters on α-molybdenum carbide; the crowding protects the support from oxidation that would cause catalyst deactivation.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-03130-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/301/299/893 ; 639/638/77/887 ; Atoms &amp; subatomic particles ; Carbon monoxide ; Catalysts ; Deactivation ; Dissociation ; Humanities and Social Sciences ; Hydrogen ; Hydrogen production ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Low temperature ; Molybdenum ; Molybdenum carbide ; multidisciplinary ; Oxidation ; Platinum ; Science ; Science (multidisciplinary) ; Zinc oxides</subject><ispartof>Nature (London), 2021-01, Vol.589 (7842), p.396-401</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>Copyright Nature Publishing Group Jan 21, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3386-a7c52ba55d3cfb78f2c6f54f4b0ce852e7d62de2e86d1fd2868e9d0c28af25943</citedby><cites>FETCH-LOGICAL-c3386-a7c52ba55d3cfb78f2c6f54f4b0ce852e7d62de2e86d1fd2868e9d0c28af25943</cites><orcidid>0000-0001-5626-8581 ; 0000-0002-6584-1623 ; 0000-0003-4297-464X ; 0000-0002-5139-9889 ; 0000-0002-3341-2998 ; 0000-0002-3329-4493 ; 0000-0002-6803-1095 ; 0000-0003-0916-4792 ; 0000-0002-4166-2284 ; 0000-0002-5152-7561 ; 0000000233412998 ; 0000000309164792 ; 0000000251399889 ; 0000000156268581 ; 000000034297464X ; 0000000251527561 ; 0000000233294493 ; 0000000241662284 ; 0000000265841623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-03130-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-03130-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1808272$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Zhang, Mengtao</creatorcontrib><creatorcontrib>Deng, Yuchen</creatorcontrib><creatorcontrib>Xu, Mingquan</creatorcontrib><creatorcontrib>Artiglia, Luca</creatorcontrib><creatorcontrib>Wen, Wen</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Chen, Bingbing</creatorcontrib><creatorcontrib>Yao, Siyu</creatorcontrib><creatorcontrib>Zhang, Xiaochen</creatorcontrib><creatorcontrib>Peng, Mi</creatorcontrib><creatorcontrib>Yan, Jie</creatorcontrib><creatorcontrib>Li, Aowen</creatorcontrib><creatorcontrib>Jiang, Zheng</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Cao, Sufeng</creatorcontrib><creatorcontrib>Yang, Ce</creatorcontrib><creatorcontrib>Kropf, A. Jeremy</creatorcontrib><creatorcontrib>Shi, Jinan</creatorcontrib><creatorcontrib>Xie, Jinglin</creatorcontrib><creatorcontrib>Bi, Mingshu</creatorcontrib><creatorcontrib>van Bokhoven, Jeroen A.</creatorcontrib><creatorcontrib>Li, Yong-Wang</creatorcontrib><creatorcontrib>Wen, Xiaodong</creatorcontrib><creatorcontrib>Flytzani-Stephanopoulos, Maria</creatorcontrib><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Zhou, Wu</creatorcontrib><creatorcontrib>Ma, Ding</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>A stable low-temperature H2-production catalyst by crowding Pt on α-MoC</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>The water–gas shift (WGS) reaction is an industrially important source of pure hydrogen (H 2 ) at the expense of carbon monoxide and water 1 , 2 . This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures 3 . Here we demonstrate that the structure (Pt 1 –Pt n )/α-MoC, where isolated platinum atoms (Pt 1 ) and subnanometre platinum clusters (Pt n ) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt 1 and Pt n species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4 ), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production. A stable, low-temperature water–gas shift catalyst is achieved by crowding platinum atoms and clusters on α-molybdenum carbide; the crowding protects the support from oxidation that would cause catalyst deactivation.</description><subject>140/146</subject><subject>639/301/299/893</subject><subject>639/638/77/887</subject><subject>Atoms &amp; subatomic particles</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Deactivation</subject><subject>Dissociation</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Low temperature</subject><subject>Molybdenum</subject><subject>Molybdenum carbide</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Zinc oxides</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1OwzAQhS0EEuXnAqwi2LAx-C-2u0QVUKQiWMDacpwJBKVxsR1VPRYX4Uy4BAmJBatZzDdv5s1D6ISSC0q4voyCllpiwggmnHKC5Q6aUKEkFlKrXTQhhGlMNJf76CDGN0JISZWYoPlVEZOtOig6v8YJlisINg0BijnDq-DrwaXW94WzyXabmIpqU7jg13XbvxSPqcitzw9872dHaK-xXYTjn3qInm-un2ZzvHi4vZtdLbDjPF9olStZZcuy5q6plG6Yk00pGlERB7pkoGrJamCgZU2bmmmpYVoTx7RtWDkV_BCdjro-ptZE1yZwr873PbhkqCaaKZah8xHKDt4HiMks2-ig62wPfoiGCTVVgk2FzOjZH_TND6HPFjKl85-UotutbKSy9xgDNGYV2qUNG0OJ2SZgxgRMTsB8J2C20nwcihnuXyD8Sv8z9QWZKofK</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Zhang, Xiao</creator><creator>Zhang, Mengtao</creator><creator>Deng, Yuchen</creator><creator>Xu, Mingquan</creator><creator>Artiglia, Luca</creator><creator>Wen, Wen</creator><creator>Gao, Rui</creator><creator>Chen, Bingbing</creator><creator>Yao, Siyu</creator><creator>Zhang, Xiaochen</creator><creator>Peng, Mi</creator><creator>Yan, Jie</creator><creator>Li, Aowen</creator><creator>Jiang, Zheng</creator><creator>Gao, Xingyu</creator><creator>Cao, Sufeng</creator><creator>Yang, Ce</creator><creator>Kropf, A. Jeremy</creator><creator>Shi, Jinan</creator><creator>Xie, Jinglin</creator><creator>Bi, Mingshu</creator><creator>van Bokhoven, Jeroen A.</creator><creator>Li, Yong-Wang</creator><creator>Wen, Xiaodong</creator><creator>Flytzani-Stephanopoulos, Maria</creator><creator>Shi, Chuan</creator><creator>Zhou, Wu</creator><creator>Ma, Ding</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5626-8581</orcidid><orcidid>https://orcid.org/0000-0002-6584-1623</orcidid><orcidid>https://orcid.org/0000-0003-4297-464X</orcidid><orcidid>https://orcid.org/0000-0002-5139-9889</orcidid><orcidid>https://orcid.org/0000-0002-3341-2998</orcidid><orcidid>https://orcid.org/0000-0002-3329-4493</orcidid><orcidid>https://orcid.org/0000-0002-6803-1095</orcidid><orcidid>https://orcid.org/0000-0003-0916-4792</orcidid><orcidid>https://orcid.org/0000-0002-4166-2284</orcidid><orcidid>https://orcid.org/0000-0002-5152-7561</orcidid><orcidid>https://orcid.org/0000000233412998</orcidid><orcidid>https://orcid.org/0000000309164792</orcidid><orcidid>https://orcid.org/0000000251399889</orcidid><orcidid>https://orcid.org/0000000156268581</orcidid><orcidid>https://orcid.org/000000034297464X</orcidid><orcidid>https://orcid.org/0000000251527561</orcidid><orcidid>https://orcid.org/0000000233294493</orcidid><orcidid>https://orcid.org/0000000241662284</orcidid><orcidid>https://orcid.org/0000000265841623</orcidid></search><sort><creationdate>20210121</creationdate><title>A stable low-temperature H2-production catalyst by crowding Pt on α-MoC</title><author>Zhang, Xiao ; Zhang, Mengtao ; Deng, Yuchen ; Xu, Mingquan ; Artiglia, Luca ; Wen, Wen ; Gao, Rui ; Chen, Bingbing ; Yao, Siyu ; Zhang, Xiaochen ; Peng, Mi ; Yan, Jie ; Li, Aowen ; Jiang, Zheng ; Gao, Xingyu ; Cao, Sufeng ; Yang, Ce ; Kropf, A. Jeremy ; Shi, Jinan ; Xie, Jinglin ; Bi, Mingshu ; van Bokhoven, Jeroen A. ; Li, Yong-Wang ; Wen, Xiaodong ; Flytzani-Stephanopoulos, Maria ; Shi, Chuan ; Zhou, Wu ; Ma, Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3386-a7c52ba55d3cfb78f2c6f54f4b0ce852e7d62de2e86d1fd2868e9d0c28af25943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/146</topic><topic>639/301/299/893</topic><topic>639/638/77/887</topic><topic>Atoms &amp; subatomic particles</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Deactivation</topic><topic>Dissociation</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Low temperature</topic><topic>Molybdenum</topic><topic>Molybdenum carbide</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Zhang, Mengtao</creatorcontrib><creatorcontrib>Deng, Yuchen</creatorcontrib><creatorcontrib>Xu, Mingquan</creatorcontrib><creatorcontrib>Artiglia, Luca</creatorcontrib><creatorcontrib>Wen, Wen</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Chen, Bingbing</creatorcontrib><creatorcontrib>Yao, Siyu</creatorcontrib><creatorcontrib>Zhang, Xiaochen</creatorcontrib><creatorcontrib>Peng, Mi</creatorcontrib><creatorcontrib>Yan, Jie</creatorcontrib><creatorcontrib>Li, Aowen</creatorcontrib><creatorcontrib>Jiang, Zheng</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Cao, Sufeng</creatorcontrib><creatorcontrib>Yang, Ce</creatorcontrib><creatorcontrib>Kropf, A. Jeremy</creatorcontrib><creatorcontrib>Shi, Jinan</creatorcontrib><creatorcontrib>Xie, Jinglin</creatorcontrib><creatorcontrib>Bi, Mingshu</creatorcontrib><creatorcontrib>van Bokhoven, Jeroen A.</creatorcontrib><creatorcontrib>Li, Yong-Wang</creatorcontrib><creatorcontrib>Wen, Xiaodong</creatorcontrib><creatorcontrib>Flytzani-Stephanopoulos, Maria</creatorcontrib><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Zhou, Wu</creatorcontrib><creatorcontrib>Ma, Ding</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiao</au><au>Zhang, Mengtao</au><au>Deng, Yuchen</au><au>Xu, Mingquan</au><au>Artiglia, Luca</au><au>Wen, Wen</au><au>Gao, Rui</au><au>Chen, Bingbing</au><au>Yao, Siyu</au><au>Zhang, Xiaochen</au><au>Peng, Mi</au><au>Yan, Jie</au><au>Li, Aowen</au><au>Jiang, Zheng</au><au>Gao, Xingyu</au><au>Cao, Sufeng</au><au>Yang, Ce</au><au>Kropf, A. Jeremy</au><au>Shi, Jinan</au><au>Xie, Jinglin</au><au>Bi, Mingshu</au><au>van Bokhoven, Jeroen A.</au><au>Li, Yong-Wang</au><au>Wen, Xiaodong</au><au>Flytzani-Stephanopoulos, Maria</au><au>Shi, Chuan</au><au>Zhou, Wu</au><au>Ma, Ding</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stable low-temperature H2-production catalyst by crowding Pt on α-MoC</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2021-01-21</date><risdate>2021</risdate><volume>589</volume><issue>7842</issue><spage>396</spage><epage>401</epage><pages>396-401</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The water–gas shift (WGS) reaction is an industrially important source of pure hydrogen (H 2 ) at the expense of carbon monoxide and water 1 , 2 . This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures 3 . Here we demonstrate that the structure (Pt 1 –Pt n )/α-MoC, where isolated platinum atoms (Pt 1 ) and subnanometre platinum clusters (Pt n ) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt 1 and Pt n species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4 ), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production. A stable, low-temperature water–gas shift catalyst is achieved by crowding platinum atoms and clusters on α-molybdenum carbide; the crowding protects the support from oxidation that would cause catalyst deactivation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41586-020-03130-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5626-8581</orcidid><orcidid>https://orcid.org/0000-0002-6584-1623</orcidid><orcidid>https://orcid.org/0000-0003-4297-464X</orcidid><orcidid>https://orcid.org/0000-0002-5139-9889</orcidid><orcidid>https://orcid.org/0000-0002-3341-2998</orcidid><orcidid>https://orcid.org/0000-0002-3329-4493</orcidid><orcidid>https://orcid.org/0000-0002-6803-1095</orcidid><orcidid>https://orcid.org/0000-0003-0916-4792</orcidid><orcidid>https://orcid.org/0000-0002-4166-2284</orcidid><orcidid>https://orcid.org/0000-0002-5152-7561</orcidid><orcidid>https://orcid.org/0000000233412998</orcidid><orcidid>https://orcid.org/0000000309164792</orcidid><orcidid>https://orcid.org/0000000251399889</orcidid><orcidid>https://orcid.org/0000000156268581</orcidid><orcidid>https://orcid.org/000000034297464X</orcidid><orcidid>https://orcid.org/0000000251527561</orcidid><orcidid>https://orcid.org/0000000233294493</orcidid><orcidid>https://orcid.org/0000000241662284</orcidid><orcidid>https://orcid.org/0000000265841623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-01, Vol.589 (7842), p.396-401
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1808272
source Springer Nature - Complete Springer Journals; Nature
subjects 140/146
639/301/299/893
639/638/77/887
Atoms & subatomic particles
Carbon monoxide
Catalysts
Deactivation
Dissociation
Humanities and Social Sciences
Hydrogen
Hydrogen production
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Low temperature
Molybdenum
Molybdenum carbide
multidisciplinary
Oxidation
Platinum
Science
Science (multidisciplinary)
Zinc oxides
title A stable low-temperature H2-production catalyst by crowding Pt on α-MoC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stable%20low-temperature%20H2-production%20catalyst%20by%20crowding%20Pt%20on%20%CE%B1-MoC&rft.jtitle=Nature%20(London)&rft.au=Zhang,%20Xiao&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-01-21&rft.volume=589&rft.issue=7842&rft.spage=396&rft.epage=401&rft.pages=396-401&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-03130-6&rft_dat=%3Cproquest_osti_%3E2479742946%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480007714&rft_id=info:pmid/&rfr_iscdi=true