Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale
Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanosc...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-08, Vol.31 (34), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 34 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Ben‐Naim, Micha Liu, Yunzhi Stevens, Michaela Burke Lee, Kyuho Wette, Melissa R. Boubnov, Alexey Trofimov, Artem A. Ievlev, Anton V. Belianinov, Alex Davis, Ryan C. Clemens, Bruce M. Bare, Simon R. Hikita, Yasuyuki Hwang, Harold Y. Higgins, Drew C. Sinclair, Robert Jaramillo, Thomas F. |
description | Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3 thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3 film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3 are translatable to a wide range of catalyst systems.
Understanding material stability and degradation mechanisms are key to designing stable catalysts. Here, the durability of SrIrO3 oxygen evolution reaction electrocatalysts is probed by correlating cross‐sectional transmission electron microscopy and secondary ion mass spectrometry chemical imaging to develop a 3D structure. Post‐test materials characterization allows for identification of a layer‐by‐layer dissolution pathway during electrocatalytic operation. |
doi_str_mv | 10.1002/adfm.202101542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1807544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562851644</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3002-961aa872b97621b930c14048d8e7bd5ac37b92999e37f4e900794c3a7013c6673</originalsourceid><addsrcrecordid>eNo9kUtPwzAQhCMEEs8rZwvOKX4kccwNlfKQWnqAStysreO2RoldbAfID-B_k7aop91ZfRrtaJLkkuABwZjeQLVoBhRTgkme0YPkhBSkSBmm5eF-J-_HyWkIHxgTzll2kvzObKV9iGArY5foXi89VBCNs2ii1QqsCU1AxqJX_-ynDE1_uqW2aPTl6nZLjWqtoncKItRdiOEWDVe6MQpq1Hui1-hbFVvfy4lR3gXl1h2CiOJKoxew_QFqfZ4cLaAO-uJ_niWzh9Hb8CkdTx-fh3fj1LE-YSoKAlByOhe8oGQuGFYkw1lZlZrPqxwU43NBhRCa8UWmBcZcZIoBx4SpouDsLLna-boQjQzKxD6jctb2GSQpMc-zrIeud9Dau89Whyg_XOtt_5ekeUHLnBRbSuyob1PrTq69acB3kmC5KUNuypD7MuTd_cNkr9gfSdSAnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562851644</pqid></control><display><type>article</type><title>Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ben‐Naim, Micha ; Liu, Yunzhi ; Stevens, Michaela Burke ; Lee, Kyuho ; Wette, Melissa R. ; Boubnov, Alexey ; Trofimov, Artem A. ; Ievlev, Anton V. ; Belianinov, Alex ; Davis, Ryan C. ; Clemens, Bruce M. ; Bare, Simon R. ; Hikita, Yasuyuki ; Hwang, Harold Y. ; Higgins, Drew C. ; Sinclair, Robert ; Jaramillo, Thomas F.</creator><creatorcontrib>Ben‐Naim, Micha ; Liu, Yunzhi ; Stevens, Michaela Burke ; Lee, Kyuho ; Wette, Melissa R. ; Boubnov, Alexey ; Trofimov, Artem A. ; Ievlev, Anton V. ; Belianinov, Alex ; Davis, Ryan C. ; Clemens, Bruce M. ; Bare, Simon R. ; Hikita, Yasuyuki ; Hwang, Harold Y. ; Higgins, Drew C. ; Sinclair, Robert ; Jaramillo, Thomas F. ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3 thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3 film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3 are translatable to a wide range of catalyst systems.
Understanding material stability and degradation mechanisms are key to designing stable catalysts. Here, the durability of SrIrO3 oxygen evolution reaction electrocatalysts is probed by correlating cross‐sectional transmission electron microscopy and secondary ion mass spectrometry chemical imaging to develop a 3D structure. Post‐test materials characterization allows for identification of a layer‐by‐layer dissolution pathway during electrocatalytic operation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202101542</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accelerated tests ; Anodic dissolution ; Atomic properties ; Degradation ; Dissolution ; electrocatalysis ; Electrocatalysts ; Electrolytes ; Energy technology ; Helium ions ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Leaching ; mass spectrometry imaging ; Materials science ; Microscopy ; oxygen evolution reaction ; Oxygen evolution reactions ; Secondary ion mass spectrometry ; Structural analysis ; Surface structure ; Thin films ; transmission electron microscopy</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (34), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9466-1245 ; 0000-0003-3584-0600 ; 0000-0002-7127-1751 ; 0000-0001-6070-9140 ; 0000-0001-6087-7662 ; 0000-0002-3975-4112 ; 0000-0003-3645-0508 ; 0000-0001-9900-0622 ; 0000-0002-7748-8329 ; 0000-0002-4932-0342 ; 0000-0002-0817-0499 ; 0000-0002-0585-2670 ; 0000000249320342 ; 0000000277488329 ; 0000000199000622 ; 0000000205852670 ; 0000000336450508 ; 0000000239754112 ; 0000000160877662 ; 0000000271271751 ; 0000000160709140 ; 0000000208170499 ; 0000000194661245 ; 0000000335840600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202101542$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202101542$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1807544$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben‐Naim, Micha</creatorcontrib><creatorcontrib>Liu, Yunzhi</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Lee, Kyuho</creatorcontrib><creatorcontrib>Wette, Melissa R.</creatorcontrib><creatorcontrib>Boubnov, Alexey</creatorcontrib><creatorcontrib>Trofimov, Artem A.</creatorcontrib><creatorcontrib>Ievlev, Anton V.</creatorcontrib><creatorcontrib>Belianinov, Alex</creatorcontrib><creatorcontrib>Davis, Ryan C.</creatorcontrib><creatorcontrib>Clemens, Bruce M.</creatorcontrib><creatorcontrib>Bare, Simon R.</creatorcontrib><creatorcontrib>Hikita, Yasuyuki</creatorcontrib><creatorcontrib>Hwang, Harold Y.</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale</title><title>Advanced functional materials</title><description>Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3 thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3 film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3 are translatable to a wide range of catalyst systems.
Understanding material stability and degradation mechanisms are key to designing stable catalysts. Here, the durability of SrIrO3 oxygen evolution reaction electrocatalysts is probed by correlating cross‐sectional transmission electron microscopy and secondary ion mass spectrometry chemical imaging to develop a 3D structure. Post‐test materials characterization allows for identification of a layer‐by‐layer dissolution pathway during electrocatalytic operation.</description><subject>Accelerated tests</subject><subject>Anodic dissolution</subject><subject>Atomic properties</subject><subject>Degradation</subject><subject>Dissolution</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Energy technology</subject><subject>Helium ions</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Leaching</subject><subject>mass spectrometry imaging</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Secondary ion mass spectrometry</subject><subject>Structural analysis</subject><subject>Surface structure</subject><subject>Thin films</subject><subject>transmission electron microscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kUtPwzAQhCMEEs8rZwvOKX4kccwNlfKQWnqAStysreO2RoldbAfID-B_k7aop91ZfRrtaJLkkuABwZjeQLVoBhRTgkme0YPkhBSkSBmm5eF-J-_HyWkIHxgTzll2kvzObKV9iGArY5foXi89VBCNs2ii1QqsCU1AxqJX_-ynDE1_uqW2aPTl6nZLjWqtoncKItRdiOEWDVe6MQpq1Hui1-hbFVvfy4lR3gXl1h2CiOJKoxew_QFqfZ4cLaAO-uJ_niWzh9Hb8CkdTx-fh3fj1LE-YSoKAlByOhe8oGQuGFYkw1lZlZrPqxwU43NBhRCa8UWmBcZcZIoBx4SpouDsLLna-boQjQzKxD6jctb2GSQpMc-zrIeud9Dau89Whyg_XOtt_5ekeUHLnBRbSuyob1PrTq69acB3kmC5KUNuypD7MuTd_cNkr9gfSdSAnA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ben‐Naim, Micha</creator><creator>Liu, Yunzhi</creator><creator>Stevens, Michaela Burke</creator><creator>Lee, Kyuho</creator><creator>Wette, Melissa R.</creator><creator>Boubnov, Alexey</creator><creator>Trofimov, Artem A.</creator><creator>Ievlev, Anton V.</creator><creator>Belianinov, Alex</creator><creator>Davis, Ryan C.</creator><creator>Clemens, Bruce M.</creator><creator>Bare, Simon R.</creator><creator>Hikita, Yasuyuki</creator><creator>Hwang, Harold Y.</creator><creator>Higgins, Drew C.</creator><creator>Sinclair, Robert</creator><creator>Jaramillo, Thomas F.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9466-1245</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0002-7127-1751</orcidid><orcidid>https://orcid.org/0000-0001-6070-9140</orcidid><orcidid>https://orcid.org/0000-0001-6087-7662</orcidid><orcidid>https://orcid.org/0000-0002-3975-4112</orcidid><orcidid>https://orcid.org/0000-0003-3645-0508</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0002-7748-8329</orcidid><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0002-0817-0499</orcidid><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000000249320342</orcidid><orcidid>https://orcid.org/0000000277488329</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000205852670</orcidid><orcidid>https://orcid.org/0000000336450508</orcidid><orcidid>https://orcid.org/0000000239754112</orcidid><orcidid>https://orcid.org/0000000160877662</orcidid><orcidid>https://orcid.org/0000000271271751</orcidid><orcidid>https://orcid.org/0000000160709140</orcidid><orcidid>https://orcid.org/0000000208170499</orcidid><orcidid>https://orcid.org/0000000194661245</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid></search><sort><creationdate>20210801</creationdate><title>Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale</title><author>Ben‐Naim, Micha ; Liu, Yunzhi ; Stevens, Michaela Burke ; Lee, Kyuho ; Wette, Melissa R. ; Boubnov, Alexey ; Trofimov, Artem A. ; Ievlev, Anton V. ; Belianinov, Alex ; Davis, Ryan C. ; Clemens, Bruce M. ; Bare, Simon R. ; Hikita, Yasuyuki ; Hwang, Harold Y. ; Higgins, Drew C. ; Sinclair, Robert ; Jaramillo, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3002-961aa872b97621b930c14048d8e7bd5ac37b92999e37f4e900794c3a7013c6673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerated tests</topic><topic>Anodic dissolution</topic><topic>Atomic properties</topic><topic>Degradation</topic><topic>Dissolution</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Energy technology</topic><topic>Helium ions</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Leaching</topic><topic>mass spectrometry imaging</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Secondary ion mass spectrometry</topic><topic>Structural analysis</topic><topic>Surface structure</topic><topic>Thin films</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben‐Naim, Micha</creatorcontrib><creatorcontrib>Liu, Yunzhi</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Lee, Kyuho</creatorcontrib><creatorcontrib>Wette, Melissa R.</creatorcontrib><creatorcontrib>Boubnov, Alexey</creatorcontrib><creatorcontrib>Trofimov, Artem A.</creatorcontrib><creatorcontrib>Ievlev, Anton V.</creatorcontrib><creatorcontrib>Belianinov, Alex</creatorcontrib><creatorcontrib>Davis, Ryan C.</creatorcontrib><creatorcontrib>Clemens, Bruce M.</creatorcontrib><creatorcontrib>Bare, Simon R.</creatorcontrib><creatorcontrib>Hikita, Yasuyuki</creatorcontrib><creatorcontrib>Hwang, Harold Y.</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben‐Naim, Micha</au><au>Liu, Yunzhi</au><au>Stevens, Michaela Burke</au><au>Lee, Kyuho</au><au>Wette, Melissa R.</au><au>Boubnov, Alexey</au><au>Trofimov, Artem A.</au><au>Ievlev, Anton V.</au><au>Belianinov, Alex</au><au>Davis, Ryan C.</au><au>Clemens, Bruce M.</au><au>Bare, Simon R.</au><au>Hikita, Yasuyuki</au><au>Hwang, Harold Y.</au><au>Higgins, Drew C.</au><au>Sinclair, Robert</au><au>Jaramillo, Thomas F.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>34</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3 thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3 film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3 are translatable to a wide range of catalyst systems.
Understanding material stability and degradation mechanisms are key to designing stable catalysts. Here, the durability of SrIrO3 oxygen evolution reaction electrocatalysts is probed by correlating cross‐sectional transmission electron microscopy and secondary ion mass spectrometry chemical imaging to develop a 3D structure. Post‐test materials characterization allows for identification of a layer‐by‐layer dissolution pathway during electrocatalytic operation.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202101542</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9466-1245</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0002-7127-1751</orcidid><orcidid>https://orcid.org/0000-0001-6070-9140</orcidid><orcidid>https://orcid.org/0000-0001-6087-7662</orcidid><orcidid>https://orcid.org/0000-0002-3975-4112</orcidid><orcidid>https://orcid.org/0000-0003-3645-0508</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0002-7748-8329</orcidid><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0002-0817-0499</orcidid><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000000249320342</orcidid><orcidid>https://orcid.org/0000000277488329</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000205852670</orcidid><orcidid>https://orcid.org/0000000336450508</orcidid><orcidid>https://orcid.org/0000000239754112</orcidid><orcidid>https://orcid.org/0000000160877662</orcidid><orcidid>https://orcid.org/0000000271271751</orcidid><orcidid>https://orcid.org/0000000160709140</orcidid><orcidid>https://orcid.org/0000000208170499</orcidid><orcidid>https://orcid.org/0000000194661245</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-08, Vol.31 (34), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_1807544 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accelerated tests Anodic dissolution Atomic properties Degradation Dissolution electrocatalysis Electrocatalysts Electrolytes Energy technology Helium ions INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Leaching mass spectrometry imaging Materials science Microscopy oxygen evolution reaction Oxygen evolution reactions Secondary ion mass spectrometry Structural analysis Surface structure Thin films transmission electron microscopy |
title | Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Degradation%20Mechanisms%20in%20SrIrO3%20Oxygen%20Evolution%20Electrocatalysts:%20Chemical%20and%20Structural%20Microscopy%20at%20the%20Nanoscale&rft.jtitle=Advanced%20functional%20materials&rft.au=Ben%E2%80%90Naim,%20Micha&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-08-01&rft.volume=31&rft.issue=34&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202101542&rft_dat=%3Cproquest_osti_%3E2562851644%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562851644&rft_id=info:pmid/&rfr_iscdi=true |