Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale

Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanosc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-08, Vol.31 (34), p.n/a
Hauptverfasser: Ben‐Naim, Micha, Liu, Yunzhi, Stevens, Michaela Burke, Lee, Kyuho, Wette, Melissa R., Boubnov, Alexey, Trofimov, Artem A., Ievlev, Anton V., Belianinov, Alex, Davis, Ryan C., Clemens, Bruce M., Bare, Simon R., Hikita, Yasuyuki, Hwang, Harold Y., Higgins, Drew C., Sinclair, Robert, Jaramillo, Thomas F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page
container_title Advanced functional materials
container_volume 31
creator Ben‐Naim, Micha
Liu, Yunzhi
Stevens, Michaela Burke
Lee, Kyuho
Wette, Melissa R.
Boubnov, Alexey
Trofimov, Artem A.
Ievlev, Anton V.
Belianinov, Alex
Davis, Ryan C.
Clemens, Bruce M.
Bare, Simon R.
Hikita, Yasuyuki
Hwang, Harold Y.
Higgins, Drew C.
Sinclair, Robert
Jaramillo, Thomas F.
description Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3 thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3 film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3 are translatable to a wide range of catalyst systems. Understanding material stability and degradation mechanisms are key to designing stable catalysts. Here, the durability of SrIrO3 oxygen evolution reaction electrocatalysts is probed by correlating cross‐sectional transmission electron microscopy and secondary ion mass spectrometry chemical imaging to develop a 3D structure. Post‐test materials characterization allows for identification of a layer‐by‐layer dissolution pathway during electrocatalytic operation.
doi_str_mv 10.1002/adfm.202101542
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1807544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562851644</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3002-961aa872b97621b930c14048d8e7bd5ac37b92999e37f4e900794c3a7013c6673</originalsourceid><addsrcrecordid>eNo9kUtPwzAQhCMEEs8rZwvOKX4kccwNlfKQWnqAStysreO2RoldbAfID-B_k7aop91ZfRrtaJLkkuABwZjeQLVoBhRTgkme0YPkhBSkSBmm5eF-J-_HyWkIHxgTzll2kvzObKV9iGArY5foXi89VBCNs2ii1QqsCU1AxqJX_-ynDE1_uqW2aPTl6nZLjWqtoncKItRdiOEWDVe6MQpq1Hui1-hbFVvfy4lR3gXl1h2CiOJKoxew_QFqfZ4cLaAO-uJ_niWzh9Hb8CkdTx-fh3fj1LE-YSoKAlByOhe8oGQuGFYkw1lZlZrPqxwU43NBhRCa8UWmBcZcZIoBx4SpouDsLLna-boQjQzKxD6jctb2GSQpMc-zrIeud9Dau89Whyg_XOtt_5ekeUHLnBRbSuyob1PrTq69acB3kmC5KUNuypD7MuTd_cNkr9gfSdSAnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562851644</pqid></control><display><type>article</type><title>Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ben‐Naim, Micha ; Liu, Yunzhi ; Stevens, Michaela Burke ; Lee, Kyuho ; Wette, Melissa R. ; Boubnov, Alexey ; Trofimov, Artem A. ; Ievlev, Anton V. ; Belianinov, Alex ; Davis, Ryan C. ; Clemens, Bruce M. ; Bare, Simon R. ; Hikita, Yasuyuki ; Hwang, Harold Y. ; Higgins, Drew C. ; Sinclair, Robert ; Jaramillo, Thomas F.</creator><creatorcontrib>Ben‐Naim, Micha ; Liu, Yunzhi ; Stevens, Michaela Burke ; Lee, Kyuho ; Wette, Melissa R. ; Boubnov, Alexey ; Trofimov, Artem A. ; Ievlev, Anton V. ; Belianinov, Alex ; Davis, Ryan C. ; Clemens, Bruce M. ; Bare, Simon R. ; Hikita, Yasuyuki ; Hwang, Harold Y. ; Higgins, Drew C. ; Sinclair, Robert ; Jaramillo, Thomas F. ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3 thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3 film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3 are translatable to a wide range of catalyst systems. Understanding material stability and degradation mechanisms are key to designing stable catalysts. Here, the durability of SrIrO3 oxygen evolution reaction electrocatalysts is probed by correlating cross‐sectional transmission electron microscopy and secondary ion mass spectrometry chemical imaging to develop a 3D structure. Post‐test materials characterization allows for identification of a layer‐by‐layer dissolution pathway during electrocatalytic operation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202101542</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accelerated tests ; Anodic dissolution ; Atomic properties ; Degradation ; Dissolution ; electrocatalysis ; Electrocatalysts ; Electrolytes ; Energy technology ; Helium ions ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Leaching ; mass spectrometry imaging ; Materials science ; Microscopy ; oxygen evolution reaction ; Oxygen evolution reactions ; Secondary ion mass spectrometry ; Structural analysis ; Surface structure ; Thin films ; transmission electron microscopy</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (34), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9466-1245 ; 0000-0003-3584-0600 ; 0000-0002-7127-1751 ; 0000-0001-6070-9140 ; 0000-0001-6087-7662 ; 0000-0002-3975-4112 ; 0000-0003-3645-0508 ; 0000-0001-9900-0622 ; 0000-0002-7748-8329 ; 0000-0002-4932-0342 ; 0000-0002-0817-0499 ; 0000-0002-0585-2670 ; 0000000249320342 ; 0000000277488329 ; 0000000199000622 ; 0000000205852670 ; 0000000336450508 ; 0000000239754112 ; 0000000160877662 ; 0000000271271751 ; 0000000160709140 ; 0000000208170499 ; 0000000194661245 ; 0000000335840600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202101542$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202101542$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1807544$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben‐Naim, Micha</creatorcontrib><creatorcontrib>Liu, Yunzhi</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Lee, Kyuho</creatorcontrib><creatorcontrib>Wette, Melissa R.</creatorcontrib><creatorcontrib>Boubnov, Alexey</creatorcontrib><creatorcontrib>Trofimov, Artem A.</creatorcontrib><creatorcontrib>Ievlev, Anton V.</creatorcontrib><creatorcontrib>Belianinov, Alex</creatorcontrib><creatorcontrib>Davis, Ryan C.</creatorcontrib><creatorcontrib>Clemens, Bruce M.</creatorcontrib><creatorcontrib>Bare, Simon R.</creatorcontrib><creatorcontrib>Hikita, Yasuyuki</creatorcontrib><creatorcontrib>Hwang, Harold Y.</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale</title><title>Advanced functional materials</title><description>Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3 thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3 film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3 are translatable to a wide range of catalyst systems. Understanding material stability and degradation mechanisms are key to designing stable catalysts. Here, the durability of SrIrO3 oxygen evolution reaction electrocatalysts is probed by correlating cross‐sectional transmission electron microscopy and secondary ion mass spectrometry chemical imaging to develop a 3D structure. Post‐test materials characterization allows for identification of a layer‐by‐layer dissolution pathway during electrocatalytic operation.</description><subject>Accelerated tests</subject><subject>Anodic dissolution</subject><subject>Atomic properties</subject><subject>Degradation</subject><subject>Dissolution</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Energy technology</subject><subject>Helium ions</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Leaching</subject><subject>mass spectrometry imaging</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Secondary ion mass spectrometry</subject><subject>Structural analysis</subject><subject>Surface structure</subject><subject>Thin films</subject><subject>transmission electron microscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kUtPwzAQhCMEEs8rZwvOKX4kccwNlfKQWnqAStysreO2RoldbAfID-B_k7aop91ZfRrtaJLkkuABwZjeQLVoBhRTgkme0YPkhBSkSBmm5eF-J-_HyWkIHxgTzll2kvzObKV9iGArY5foXi89VBCNs2ii1QqsCU1AxqJX_-ynDE1_uqW2aPTl6nZLjWqtoncKItRdiOEWDVe6MQpq1Hui1-hbFVvfy4lR3gXl1h2CiOJKoxew_QFqfZ4cLaAO-uJ_niWzh9Hb8CkdTx-fh3fj1LE-YSoKAlByOhe8oGQuGFYkw1lZlZrPqxwU43NBhRCa8UWmBcZcZIoBx4SpouDsLLna-boQjQzKxD6jctb2GSQpMc-zrIeud9Dau89Whyg_XOtt_5ekeUHLnBRbSuyob1PrTq69acB3kmC5KUNuypD7MuTd_cNkr9gfSdSAnA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ben‐Naim, Micha</creator><creator>Liu, Yunzhi</creator><creator>Stevens, Michaela Burke</creator><creator>Lee, Kyuho</creator><creator>Wette, Melissa R.</creator><creator>Boubnov, Alexey</creator><creator>Trofimov, Artem A.</creator><creator>Ievlev, Anton V.</creator><creator>Belianinov, Alex</creator><creator>Davis, Ryan C.</creator><creator>Clemens, Bruce M.</creator><creator>Bare, Simon R.</creator><creator>Hikita, Yasuyuki</creator><creator>Hwang, Harold Y.</creator><creator>Higgins, Drew C.</creator><creator>Sinclair, Robert</creator><creator>Jaramillo, Thomas F.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9466-1245</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0002-7127-1751</orcidid><orcidid>https://orcid.org/0000-0001-6070-9140</orcidid><orcidid>https://orcid.org/0000-0001-6087-7662</orcidid><orcidid>https://orcid.org/0000-0002-3975-4112</orcidid><orcidid>https://orcid.org/0000-0003-3645-0508</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0002-7748-8329</orcidid><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0002-0817-0499</orcidid><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000000249320342</orcidid><orcidid>https://orcid.org/0000000277488329</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000205852670</orcidid><orcidid>https://orcid.org/0000000336450508</orcidid><orcidid>https://orcid.org/0000000239754112</orcidid><orcidid>https://orcid.org/0000000160877662</orcidid><orcidid>https://orcid.org/0000000271271751</orcidid><orcidid>https://orcid.org/0000000160709140</orcidid><orcidid>https://orcid.org/0000000208170499</orcidid><orcidid>https://orcid.org/0000000194661245</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid></search><sort><creationdate>20210801</creationdate><title>Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale</title><author>Ben‐Naim, Micha ; Liu, Yunzhi ; Stevens, Michaela Burke ; Lee, Kyuho ; Wette, Melissa R. ; Boubnov, Alexey ; Trofimov, Artem A. ; Ievlev, Anton V. ; Belianinov, Alex ; Davis, Ryan C. ; Clemens, Bruce M. ; Bare, Simon R. ; Hikita, Yasuyuki ; Hwang, Harold Y. ; Higgins, Drew C. ; Sinclair, Robert ; Jaramillo, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3002-961aa872b97621b930c14048d8e7bd5ac37b92999e37f4e900794c3a7013c6673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerated tests</topic><topic>Anodic dissolution</topic><topic>Atomic properties</topic><topic>Degradation</topic><topic>Dissolution</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Energy technology</topic><topic>Helium ions</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Leaching</topic><topic>mass spectrometry imaging</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Secondary ion mass spectrometry</topic><topic>Structural analysis</topic><topic>Surface structure</topic><topic>Thin films</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben‐Naim, Micha</creatorcontrib><creatorcontrib>Liu, Yunzhi</creatorcontrib><creatorcontrib>Stevens, Michaela Burke</creatorcontrib><creatorcontrib>Lee, Kyuho</creatorcontrib><creatorcontrib>Wette, Melissa R.</creatorcontrib><creatorcontrib>Boubnov, Alexey</creatorcontrib><creatorcontrib>Trofimov, Artem A.</creatorcontrib><creatorcontrib>Ievlev, Anton V.</creatorcontrib><creatorcontrib>Belianinov, Alex</creatorcontrib><creatorcontrib>Davis, Ryan C.</creatorcontrib><creatorcontrib>Clemens, Bruce M.</creatorcontrib><creatorcontrib>Bare, Simon R.</creatorcontrib><creatorcontrib>Hikita, Yasuyuki</creatorcontrib><creatorcontrib>Hwang, Harold Y.</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>Jaramillo, Thomas F.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben‐Naim, Micha</au><au>Liu, Yunzhi</au><au>Stevens, Michaela Burke</au><au>Lee, Kyuho</au><au>Wette, Melissa R.</au><au>Boubnov, Alexey</au><au>Trofimov, Artem A.</au><au>Ievlev, Anton V.</au><au>Belianinov, Alex</au><au>Davis, Ryan C.</au><au>Clemens, Bruce M.</au><au>Bare, Simon R.</au><au>Hikita, Yasuyuki</au><au>Hwang, Harold Y.</au><au>Higgins, Drew C.</au><au>Sinclair, Robert</au><au>Jaramillo, Thomas F.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>34</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3 thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3 film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3 are translatable to a wide range of catalyst systems. Understanding material stability and degradation mechanisms are key to designing stable catalysts. Here, the durability of SrIrO3 oxygen evolution reaction electrocatalysts is probed by correlating cross‐sectional transmission electron microscopy and secondary ion mass spectrometry chemical imaging to develop a 3D structure. Post‐test materials characterization allows for identification of a layer‐by‐layer dissolution pathway during electrocatalytic operation.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202101542</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9466-1245</orcidid><orcidid>https://orcid.org/0000-0003-3584-0600</orcidid><orcidid>https://orcid.org/0000-0002-7127-1751</orcidid><orcidid>https://orcid.org/0000-0001-6070-9140</orcidid><orcidid>https://orcid.org/0000-0001-6087-7662</orcidid><orcidid>https://orcid.org/0000-0002-3975-4112</orcidid><orcidid>https://orcid.org/0000-0003-3645-0508</orcidid><orcidid>https://orcid.org/0000-0001-9900-0622</orcidid><orcidid>https://orcid.org/0000-0002-7748-8329</orcidid><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0002-0817-0499</orcidid><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000000249320342</orcidid><orcidid>https://orcid.org/0000000277488329</orcidid><orcidid>https://orcid.org/0000000199000622</orcidid><orcidid>https://orcid.org/0000000205852670</orcidid><orcidid>https://orcid.org/0000000336450508</orcidid><orcidid>https://orcid.org/0000000239754112</orcidid><orcidid>https://orcid.org/0000000160877662</orcidid><orcidid>https://orcid.org/0000000271271751</orcidid><orcidid>https://orcid.org/0000000160709140</orcidid><orcidid>https://orcid.org/0000000208170499</orcidid><orcidid>https://orcid.org/0000000194661245</orcidid><orcidid>https://orcid.org/0000000335840600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-08, Vol.31 (34), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1807544
source Wiley Online Library Journals Frontfile Complete
subjects Accelerated tests
Anodic dissolution
Atomic properties
Degradation
Dissolution
electrocatalysis
Electrocatalysts
Electrolytes
Energy technology
Helium ions
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Leaching
mass spectrometry imaging
Materials science
Microscopy
oxygen evolution reaction
Oxygen evolution reactions
Secondary ion mass spectrometry
Structural analysis
Surface structure
Thin films
transmission electron microscopy
title Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Degradation%20Mechanisms%20in%20SrIrO3%20Oxygen%20Evolution%20Electrocatalysts:%20Chemical%20and%20Structural%20Microscopy%20at%20the%20Nanoscale&rft.jtitle=Advanced%20functional%20materials&rft.au=Ben%E2%80%90Naim,%20Micha&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-08-01&rft.volume=31&rft.issue=34&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202101542&rft_dat=%3Cproquest_osti_%3E2562851644%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562851644&rft_id=info:pmid/&rfr_iscdi=true