Potential of hotspot solar‐induced chlorophyll fluorescence for better tracking terrestrial photosynthesis

Remote sensing of solar‐induced fluorescence (SIF) opens a new window for quantifying a key ecological variable, the terrestrial ecosystem gross primary production (GPP), because of the revealed strong SIF–GPP correlation. However, similar to many other remotely sensed metrics, SIF observations suff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2021-05, Vol.27 (10), p.2144-2158
Hauptverfasser: Hao, Dalei, Asrar, Ghassem R., Zeng, Yelu, Yang, Xi, Li, Xing, Xiao, Jingfeng, Guan, Kaiyu, Wen, Jianguang, Xiao, Qing, Berry, Joseph A., Chen, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2158
container_issue 10
container_start_page 2144
container_title Global change biology
container_volume 27
creator Hao, Dalei
Asrar, Ghassem R.
Zeng, Yelu
Yang, Xi
Li, Xing
Xiao, Jingfeng
Guan, Kaiyu
Wen, Jianguang
Xiao, Qing
Berry, Joseph A.
Chen, Min
description Remote sensing of solar‐induced fluorescence (SIF) opens a new window for quantifying a key ecological variable, the terrestrial ecosystem gross primary production (GPP), because of the revealed strong SIF–GPP correlation. However, similar to many other remotely sensed metrics, SIF observations suffer from the sun‐sensor geometry effects, which may have important impacts on the SIF–GPP relationship but remain poorly understood. Here we used remotely sensed SIF, globally distributed tower GPP data, and a mechanistic model to provide a systematic analysis. Our results reveal that leaf physiology, canopy structure, and sun‐sensor geometries all affect the SIF–GPP relationship. In particular, we found that SIF observations in the sun‐tracking hotspot direction can be a better proxy of GPP due to the similar responses of light use efficiency and SIF escaping probability in the hotspot direction to the increasing incoming solar radiation. Such conclusions are supported by a variety of modeling simulations and satellite observations over various plant function types, at different time scales and with satellite observational modes. This study demonstrates the potential and advantage of normalizing SIF observations to the hotspot direction for better global GPP estimations. This study also demonstrates the great potentials of current and future spaceborne sun‐tracking satellite missions for a significant improvement in measuring and monitoring, at a wide range of spatial and temporal scales, the changes in terrestrial ecosystem GPP in response to anticipated changes in the Earth's environmental conditions. Leaf physiology, canopy structure, and sun‐sensor geometries all affect the relationship between solar‐induced fluorescence (SIF) and terrestrial ecosystem gross primary production (GPP). In particular, we found that SIF observations in the sun‐tracking hotspot direction can be a better proxy of GPP. Such conclusions are supported by a variety of modeling simulations and satellite observations over various plant function types, at different time scales and with satellite observational modes. This study demonstrates the potential and advantage of normalizing SIF observations to the hotspot direction for better global GPP estimations.
doi_str_mv 10.1111/gcb.15554
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1804922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513080965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4814-7ac27b95535d0988d2b302beb64e99f15c67418de88a33f33882c8c06c072a273</originalsourceid><addsrcrecordid>eNp1kMtO3TAQhq0KVCjtoi-ALLrqIhxf4sRZliMulZBg0a6tZDI5CTVxajuqzq6PwDPyJPgQYMdsZkbz6dPoJ-QrZ6c81WoDzSlXSuUfyCGXhcpErou93azyjDMuD8inEO4YY1Kw4iM5kFIVTGl1SOytizjGobbUdbR3MUwu0uBs7R__PwxjOwO2FHrrvJv6rbW0s7PzGABHQNo5TxuMET2NvoY_w7ihaUn36HfOKRld2I6xxzCEz2S_q23ALy_9iPy-OP-1vsquby5_rn9cZ5BrnmdlDaJsKqWkalmldSsayUSDTZFjVXVcQVHmXLeodS1lJ6XWAjSwAlgpalHKI3KyeF2IgwkwRIQe3DgiRMM1yyshEvRtgSbv_s7pYXPnZj-mv4xQXDLNqkIl6vtCgXcheOzM5If72m8NZ2YXvknhm-fwE3v8Ypybe2zfyNe0E7BagH-Dxe37JnO5PluUT0pxj-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513080965</pqid></control><display><type>article</type><title>Potential of hotspot solar‐induced chlorophyll fluorescence for better tracking terrestrial photosynthesis</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Hao, Dalei ; Asrar, Ghassem R. ; Zeng, Yelu ; Yang, Xi ; Li, Xing ; Xiao, Jingfeng ; Guan, Kaiyu ; Wen, Jianguang ; Xiao, Qing ; Berry, Joseph A. ; Chen, Min</creator><creatorcontrib>Hao, Dalei ; Asrar, Ghassem R. ; Zeng, Yelu ; Yang, Xi ; Li, Xing ; Xiao, Jingfeng ; Guan, Kaiyu ; Wen, Jianguang ; Xiao, Qing ; Berry, Joseph A. ; Chen, Min</creatorcontrib><description>Remote sensing of solar‐induced fluorescence (SIF) opens a new window for quantifying a key ecological variable, the terrestrial ecosystem gross primary production (GPP), because of the revealed strong SIF–GPP correlation. However, similar to many other remotely sensed metrics, SIF observations suffer from the sun‐sensor geometry effects, which may have important impacts on the SIF–GPP relationship but remain poorly understood. Here we used remotely sensed SIF, globally distributed tower GPP data, and a mechanistic model to provide a systematic analysis. Our results reveal that leaf physiology, canopy structure, and sun‐sensor geometries all affect the SIF–GPP relationship. In particular, we found that SIF observations in the sun‐tracking hotspot direction can be a better proxy of GPP due to the similar responses of light use efficiency and SIF escaping probability in the hotspot direction to the increasing incoming solar radiation. Such conclusions are supported by a variety of modeling simulations and satellite observations over various plant function types, at different time scales and with satellite observational modes. This study demonstrates the potential and advantage of normalizing SIF observations to the hotspot direction for better global GPP estimations. This study also demonstrates the great potentials of current and future spaceborne sun‐tracking satellite missions for a significant improvement in measuring and monitoring, at a wide range of spatial and temporal scales, the changes in terrestrial ecosystem GPP in response to anticipated changes in the Earth's environmental conditions. Leaf physiology, canopy structure, and sun‐sensor geometries all affect the relationship between solar‐induced fluorescence (SIF) and terrestrial ecosystem gross primary production (GPP). In particular, we found that SIF observations in the sun‐tracking hotspot direction can be a better proxy of GPP. Such conclusions are supported by a variety of modeling simulations and satellite observations over various plant function types, at different time scales and with satellite observational modes. This study demonstrates the potential and advantage of normalizing SIF observations to the hotspot direction for better global GPP estimations.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.15554</identifier><identifier>PMID: 33560585</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>angular normalization ; Chlorophyll ; Chlorophyll - analysis ; Chlorophylls ; Direction ; directional effects ; DSCOVR ; Ecosystem ; Environmental changes ; Environmental conditions ; Environmental Monitoring ; EPIC ; Fluorescence ; gross primary production ; Hot spots ; Light effects ; Model testing ; MODIS ; Normalizing ; OCO‐2 ; Photosynthesis ; Plant cover ; Primary production ; Probability theory ; Remote sensing ; Remote sensors ; Satellite observation ; Satellite tracking ; Satellites ; Seasons ; Sensors ; Solar radiation ; Sun ; sun‐induced fluorescence ; sun‐sensor geometry effects ; Terrestrial ecosystems ; Terrestrial environments</subject><ispartof>Global change biology, 2021-05, Vol.27 (10), p.2144-2158</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4814-7ac27b95535d0988d2b302beb64e99f15c67418de88a33f33882c8c06c072a273</citedby><cites>FETCH-LOGICAL-c4814-7ac27b95535d0988d2b302beb64e99f15c67418de88a33f33882c8c06c072a273</cites><orcidid>0000-0001-6311-7124 ; 0000-0003-4267-1841 ; 0000-0002-5095-6735 ; 0000-0002-0622-6903 ; 0000-0001-7154-6332 ; 0000000163117124 ; 0000000171546332 ; 0000000342671841 ; 0000000250956735 ; 0000000206226903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.15554$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.15554$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33560585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1804922$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Dalei</creatorcontrib><creatorcontrib>Asrar, Ghassem R.</creatorcontrib><creatorcontrib>Zeng, Yelu</creatorcontrib><creatorcontrib>Yang, Xi</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Xiao, Jingfeng</creatorcontrib><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Wen, Jianguang</creatorcontrib><creatorcontrib>Xiao, Qing</creatorcontrib><creatorcontrib>Berry, Joseph A.</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><title>Potential of hotspot solar‐induced chlorophyll fluorescence for better tracking terrestrial photosynthesis</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Remote sensing of solar‐induced fluorescence (SIF) opens a new window for quantifying a key ecological variable, the terrestrial ecosystem gross primary production (GPP), because of the revealed strong SIF–GPP correlation. However, similar to many other remotely sensed metrics, SIF observations suffer from the sun‐sensor geometry effects, which may have important impacts on the SIF–GPP relationship but remain poorly understood. Here we used remotely sensed SIF, globally distributed tower GPP data, and a mechanistic model to provide a systematic analysis. Our results reveal that leaf physiology, canopy structure, and sun‐sensor geometries all affect the SIF–GPP relationship. In particular, we found that SIF observations in the sun‐tracking hotspot direction can be a better proxy of GPP due to the similar responses of light use efficiency and SIF escaping probability in the hotspot direction to the increasing incoming solar radiation. Such conclusions are supported by a variety of modeling simulations and satellite observations over various plant function types, at different time scales and with satellite observational modes. This study demonstrates the potential and advantage of normalizing SIF observations to the hotspot direction for better global GPP estimations. This study also demonstrates the great potentials of current and future spaceborne sun‐tracking satellite missions for a significant improvement in measuring and monitoring, at a wide range of spatial and temporal scales, the changes in terrestrial ecosystem GPP in response to anticipated changes in the Earth's environmental conditions. Leaf physiology, canopy structure, and sun‐sensor geometries all affect the relationship between solar‐induced fluorescence (SIF) and terrestrial ecosystem gross primary production (GPP). In particular, we found that SIF observations in the sun‐tracking hotspot direction can be a better proxy of GPP. Such conclusions are supported by a variety of modeling simulations and satellite observations over various plant function types, at different time scales and with satellite observational modes. This study demonstrates the potential and advantage of normalizing SIF observations to the hotspot direction for better global GPP estimations.</description><subject>angular normalization</subject><subject>Chlorophyll</subject><subject>Chlorophyll - analysis</subject><subject>Chlorophylls</subject><subject>Direction</subject><subject>directional effects</subject><subject>DSCOVR</subject><subject>Ecosystem</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Environmental Monitoring</subject><subject>EPIC</subject><subject>Fluorescence</subject><subject>gross primary production</subject><subject>Hot spots</subject><subject>Light effects</subject><subject>Model testing</subject><subject>MODIS</subject><subject>Normalizing</subject><subject>OCO‐2</subject><subject>Photosynthesis</subject><subject>Plant cover</subject><subject>Primary production</subject><subject>Probability theory</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Satellite observation</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Seasons</subject><subject>Sensors</subject><subject>Solar radiation</subject><subject>Sun</subject><subject>sun‐induced fluorescence</subject><subject>sun‐sensor geometry effects</subject><subject>Terrestrial ecosystems</subject><subject>Terrestrial environments</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtO3TAQhq0KVCjtoi-ALLrqIhxf4sRZliMulZBg0a6tZDI5CTVxajuqzq6PwDPyJPgQYMdsZkbz6dPoJ-QrZ6c81WoDzSlXSuUfyCGXhcpErou93azyjDMuD8inEO4YY1Kw4iM5kFIVTGl1SOytizjGobbUdbR3MUwu0uBs7R__PwxjOwO2FHrrvJv6rbW0s7PzGABHQNo5TxuMET2NvoY_w7ihaUn36HfOKRld2I6xxzCEz2S_q23ALy_9iPy-OP-1vsquby5_rn9cZ5BrnmdlDaJsKqWkalmldSsayUSDTZFjVXVcQVHmXLeodS1lJ6XWAjSwAlgpalHKI3KyeF2IgwkwRIQe3DgiRMM1yyshEvRtgSbv_s7pYXPnZj-mv4xQXDLNqkIl6vtCgXcheOzM5If72m8NZ2YXvknhm-fwE3v8Ypybe2zfyNe0E7BagH-Dxe37JnO5PluUT0pxj-8</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Hao, Dalei</creator><creator>Asrar, Ghassem R.</creator><creator>Zeng, Yelu</creator><creator>Yang, Xi</creator><creator>Li, Xing</creator><creator>Xiao, Jingfeng</creator><creator>Guan, Kaiyu</creator><creator>Wen, Jianguang</creator><creator>Xiao, Qing</creator><creator>Berry, Joseph A.</creator><creator>Chen, Min</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6311-7124</orcidid><orcidid>https://orcid.org/0000-0003-4267-1841</orcidid><orcidid>https://orcid.org/0000-0002-5095-6735</orcidid><orcidid>https://orcid.org/0000-0002-0622-6903</orcidid><orcidid>https://orcid.org/0000-0001-7154-6332</orcidid><orcidid>https://orcid.org/0000000163117124</orcidid><orcidid>https://orcid.org/0000000171546332</orcidid><orcidid>https://orcid.org/0000000342671841</orcidid><orcidid>https://orcid.org/0000000250956735</orcidid><orcidid>https://orcid.org/0000000206226903</orcidid></search><sort><creationdate>202105</creationdate><title>Potential of hotspot solar‐induced chlorophyll fluorescence for better tracking terrestrial photosynthesis</title><author>Hao, Dalei ; Asrar, Ghassem R. ; Zeng, Yelu ; Yang, Xi ; Li, Xing ; Xiao, Jingfeng ; Guan, Kaiyu ; Wen, Jianguang ; Xiao, Qing ; Berry, Joseph A. ; Chen, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4814-7ac27b95535d0988d2b302beb64e99f15c67418de88a33f33882c8c06c072a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>angular normalization</topic><topic>Chlorophyll</topic><topic>Chlorophyll - analysis</topic><topic>Chlorophylls</topic><topic>Direction</topic><topic>directional effects</topic><topic>DSCOVR</topic><topic>Ecosystem</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Environmental Monitoring</topic><topic>EPIC</topic><topic>Fluorescence</topic><topic>gross primary production</topic><topic>Hot spots</topic><topic>Light effects</topic><topic>Model testing</topic><topic>MODIS</topic><topic>Normalizing</topic><topic>OCO‐2</topic><topic>Photosynthesis</topic><topic>Plant cover</topic><topic>Primary production</topic><topic>Probability theory</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Satellite observation</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Seasons</topic><topic>Sensors</topic><topic>Solar radiation</topic><topic>Sun</topic><topic>sun‐induced fluorescence</topic><topic>sun‐sensor geometry effects</topic><topic>Terrestrial ecosystems</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Dalei</creatorcontrib><creatorcontrib>Asrar, Ghassem R.</creatorcontrib><creatorcontrib>Zeng, Yelu</creatorcontrib><creatorcontrib>Yang, Xi</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Xiao, Jingfeng</creatorcontrib><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Wen, Jianguang</creatorcontrib><creatorcontrib>Xiao, Qing</creatorcontrib><creatorcontrib>Berry, Joseph A.</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Dalei</au><au>Asrar, Ghassem R.</au><au>Zeng, Yelu</au><au>Yang, Xi</au><au>Li, Xing</au><au>Xiao, Jingfeng</au><au>Guan, Kaiyu</au><au>Wen, Jianguang</au><au>Xiao, Qing</au><au>Berry, Joseph A.</au><au>Chen, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of hotspot solar‐induced chlorophyll fluorescence for better tracking terrestrial photosynthesis</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2021-05</date><risdate>2021</risdate><volume>27</volume><issue>10</issue><spage>2144</spage><epage>2158</epage><pages>2144-2158</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Remote sensing of solar‐induced fluorescence (SIF) opens a new window for quantifying a key ecological variable, the terrestrial ecosystem gross primary production (GPP), because of the revealed strong SIF–GPP correlation. However, similar to many other remotely sensed metrics, SIF observations suffer from the sun‐sensor geometry effects, which may have important impacts on the SIF–GPP relationship but remain poorly understood. Here we used remotely sensed SIF, globally distributed tower GPP data, and a mechanistic model to provide a systematic analysis. Our results reveal that leaf physiology, canopy structure, and sun‐sensor geometries all affect the SIF–GPP relationship. In particular, we found that SIF observations in the sun‐tracking hotspot direction can be a better proxy of GPP due to the similar responses of light use efficiency and SIF escaping probability in the hotspot direction to the increasing incoming solar radiation. Such conclusions are supported by a variety of modeling simulations and satellite observations over various plant function types, at different time scales and with satellite observational modes. This study demonstrates the potential and advantage of normalizing SIF observations to the hotspot direction for better global GPP estimations. This study also demonstrates the great potentials of current and future spaceborne sun‐tracking satellite missions for a significant improvement in measuring and monitoring, at a wide range of spatial and temporal scales, the changes in terrestrial ecosystem GPP in response to anticipated changes in the Earth's environmental conditions. Leaf physiology, canopy structure, and sun‐sensor geometries all affect the relationship between solar‐induced fluorescence (SIF) and terrestrial ecosystem gross primary production (GPP). In particular, we found that SIF observations in the sun‐tracking hotspot direction can be a better proxy of GPP. Such conclusions are supported by a variety of modeling simulations and satellite observations over various plant function types, at different time scales and with satellite observational modes. This study demonstrates the potential and advantage of normalizing SIF observations to the hotspot direction for better global GPP estimations.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33560585</pmid><doi>10.1111/gcb.15554</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6311-7124</orcidid><orcidid>https://orcid.org/0000-0003-4267-1841</orcidid><orcidid>https://orcid.org/0000-0002-5095-6735</orcidid><orcidid>https://orcid.org/0000-0002-0622-6903</orcidid><orcidid>https://orcid.org/0000-0001-7154-6332</orcidid><orcidid>https://orcid.org/0000000163117124</orcidid><orcidid>https://orcid.org/0000000171546332</orcidid><orcidid>https://orcid.org/0000000342671841</orcidid><orcidid>https://orcid.org/0000000250956735</orcidid><orcidid>https://orcid.org/0000000206226903</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2021-05, Vol.27 (10), p.2144-2158
issn 1354-1013
1365-2486
language eng
recordid cdi_osti_scitechconnect_1804922
source MEDLINE; Wiley Journals
subjects angular normalization
Chlorophyll
Chlorophyll - analysis
Chlorophylls
Direction
directional effects
DSCOVR
Ecosystem
Environmental changes
Environmental conditions
Environmental Monitoring
EPIC
Fluorescence
gross primary production
Hot spots
Light effects
Model testing
MODIS
Normalizing
OCO‐2
Photosynthesis
Plant cover
Primary production
Probability theory
Remote sensing
Remote sensors
Satellite observation
Satellite tracking
Satellites
Seasons
Sensors
Solar radiation
Sun
sun‐induced fluorescence
sun‐sensor geometry effects
Terrestrial ecosystems
Terrestrial environments
title Potential of hotspot solar‐induced chlorophyll fluorescence for better tracking terrestrial photosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20hotspot%20solar%E2%80%90induced%20chlorophyll%20fluorescence%20for%20better%20tracking%20terrestrial%20photosynthesis&rft.jtitle=Global%20change%20biology&rft.au=Hao,%20Dalei&rft.date=2021-05&rft.volume=27&rft.issue=10&rft.spage=2144&rft.epage=2158&rft.pages=2144-2158&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.15554&rft_dat=%3Cproquest_osti_%3E2513080965%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513080965&rft_id=info:pmid/33560585&rfr_iscdi=true