Medium Energy Electron Flux in Earth's Outer Radiation Belt (MERLIN): A Machine Learning Model

The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120–600 keV)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2020-11, Vol.18 (11), p.n/a
Hauptverfasser: Smirnov, A. G., Berrendorf, M., Shprits, Y. Y., Kronberg, E. A., Allison, H. J., Aseev, N. A., Zhelavskaya, I. S., Morley, S. K., Reeves, G. D., Carver, M. R., Effenberger, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Space Weather
container_volume 18
creator Smirnov, A. G.
Berrendorf, M.
Shprits, Y. Y.
Kronberg, E. A.
Allison, H. J.
Aseev, N. A.
Zhelavskaya, I. S.
Morley, S. K.
Reeves, G. D.
Carver, M. R.
Effenberger, F.
description The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120–600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on >15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis. Plain Language Summary The radiation belts of the Earth, which are the zones of charged energetic particles trapped by the geomagnetic field, comprise complex and dynamic systems posing a significant threat to a variety of commercial and military satellites. While the inner belt is relatively stable, the outer belt is highly variable and depends substantially on solar activity; therefore, accurate and improved models of electron flux in the outer radiation belt are essential to understand the underlying physical processes. Although many models have been developed for the geostationary orbit and relativistic energies, prediction of electron flux in the 120–600 keV energy range still remains challenging. We present a data‐driven model of the medium energies (120–600 keV) differentialelectron flux in the outer radiation belt based on machine learning. We use 17 years of electron observations by Global Positioning System (GPS)
doi_str_mv 10.1029/2020SW002532
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1804337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463709335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3717-cba873d78884f42071011251bc62fbfe589d4a3e93ddfcc8dde781a8968b82a3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AiCs7pzT8g6EEFq_nRNqm3OTodbA62wW6GNEm3jJrOpEX331uph508vQfvw-O9bxBcIviAIE4fMcRwsYIQxwQfBT0URzikJIXHB_1pcOb9tjVRjKNe8D7VyjQfILParfcgK7WsXWXBqGy-gbEgE67e3Hgwa2rtwFwoI2rTzp91WYPbaTafjN_unsAATIXcGKvBRAtnjV2DaaV0eR6cFKL0-uKv9oPlKFsOX8PJ7GU8HExCSSiiocwFo0RRxlhURBhSBBHCMcplgou80DFLVSSITolShZRMKU0ZEixNWM6wIP3gqltb-dpwL02t5UZW1rbfcMRgRAht0XWHdq76bLSv-bZqnG3P4jhKCIUpIXGr7jslXeW90wXfOfMh3J4jyH9T5ocptxx3_MuUev-v5YtVhhFMKPkBMch6qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463709335</pqid></control><display><type>article</type><title>Medium Energy Electron Flux in Earth's Outer Radiation Belt (MERLIN): A Machine Learning Model</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Smirnov, A. G. ; Berrendorf, M. ; Shprits, Y. Y. ; Kronberg, E. A. ; Allison, H. J. ; Aseev, N. A. ; Zhelavskaya, I. S. ; Morley, S. K. ; Reeves, G. D. ; Carver, M. R. ; Effenberger, F.</creator><creatorcontrib>Smirnov, A. G. ; Berrendorf, M. ; Shprits, Y. Y. ; Kronberg, E. A. ; Allison, H. J. ; Aseev, N. A. ; Zhelavskaya, I. S. ; Morley, S. K. ; Reeves, G. D. ; Carver, M. R. ; Effenberger, F. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120–600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on &gt;15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis. Plain Language Summary The radiation belts of the Earth, which are the zones of charged energetic particles trapped by the geomagnetic field, comprise complex and dynamic systems posing a significant threat to a variety of commercial and military satellites. While the inner belt is relatively stable, the outer belt is highly variable and depends substantially on solar activity; therefore, accurate and improved models of electron flux in the outer radiation belt are essential to understand the underlying physical processes. Although many models have been developed for the geostationary orbit and relativistic energies, prediction of electron flux in the 120–600 keV energy range still remains challenging. We present a data‐driven model of the medium energies (120–600 keV) differentialelectron flux in the outer radiation belt based on machine learning. We use 17 years of electron observations by Global Positioning System (GPS) satellites. We set up a 3D model for flux prediction in terms of L‐values, MLT, and magnetic latitude. The model gives reliable predictions of the radiation environment in the outer radiation belt and has wide space weather applications. Key Points A machine learning model is created to predict electron flux at MEO for energies 120–600 keV The model requires solar wind parameters and geomagnetic indices as input and does not use persistence MERLIN model yields high accuracy and high correlation with observations (0.8)</description><identifier>ISSN: 1542-7390</identifier><identifier>ISSN: 1539-4964</identifier><identifier>EISSN: 1542-7390</identifier><identifier>DOI: 10.1029/2020SW002532</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; ASTRONOMY AND ASTROPHYSICS ; Dynamical systems ; Earth ; Electron density ; Electron flux ; electrons ; empirical modeling ; Energetic particles ; Energy ; Fluctuations ; Geomagnetic field ; Geomagnetism ; Geosynchronous orbits ; Global positioning systems ; GPS ; Machine learning ; magnetosphere ; Military satellites ; Mission planning ; Outer radiation belt ; Radiation ; Radiation belts ; Relativistic effects ; Satellites ; Solar activity ; Solar wind ; Solar wind parameters ; Space weather ; Three dimensional models ; Weather</subject><ispartof>Space Weather, 2020-11, Vol.18 (11), p.n/a</ispartof><rights>2020. The Authors.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3717-cba873d78884f42071011251bc62fbfe589d4a3e93ddfcc8dde781a8968b82a3</citedby><cites>FETCH-LOGICAL-c3717-cba873d78884f42071011251bc62fbfe589d4a3e93ddfcc8dde781a8968b82a3</cites><orcidid>0000-0001-9724-4009 ; 0000-0003-3689-4336 ; 0000-0002-6665-2023 ; 0000-0002-9625-0834 ; 0000-0001-8520-0199 ; 0000-0002-7388-6581 ; 0000-0001-6351-8710 ; 0000-0002-7029-5372 ; 0000-0002-7985-8098 ; 0000-0001-7741-682X ; 0000-0002-7112-2780 ; 0000000336894336 ; 0000000273886581 ; 0000000197244009 ; 0000000270295372 ; 000000017741682X ; 0000000185200199 ; 0000000163518710 ; 0000000266652023 ; 0000000296250834 ; 0000000279858098 ; 0000000271122780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020SW002532$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020SW002532$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,11542,27903,27904,45553,45554,46031,46455</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1804337$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smirnov, A. G.</creatorcontrib><creatorcontrib>Berrendorf, M.</creatorcontrib><creatorcontrib>Shprits, Y. Y.</creatorcontrib><creatorcontrib>Kronberg, E. A.</creatorcontrib><creatorcontrib>Allison, H. J.</creatorcontrib><creatorcontrib>Aseev, N. A.</creatorcontrib><creatorcontrib>Zhelavskaya, I. S.</creatorcontrib><creatorcontrib>Morley, S. K.</creatorcontrib><creatorcontrib>Reeves, G. D.</creatorcontrib><creatorcontrib>Carver, M. R.</creatorcontrib><creatorcontrib>Effenberger, F.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Medium Energy Electron Flux in Earth's Outer Radiation Belt (MERLIN): A Machine Learning Model</title><title>Space Weather</title><description>The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120–600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on &gt;15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis. Plain Language Summary The radiation belts of the Earth, which are the zones of charged energetic particles trapped by the geomagnetic field, comprise complex and dynamic systems posing a significant threat to a variety of commercial and military satellites. While the inner belt is relatively stable, the outer belt is highly variable and depends substantially on solar activity; therefore, accurate and improved models of electron flux in the outer radiation belt are essential to understand the underlying physical processes. Although many models have been developed for the geostationary orbit and relativistic energies, prediction of electron flux in the 120–600 keV energy range still remains challenging. We present a data‐driven model of the medium energies (120–600 keV) differentialelectron flux in the outer radiation belt based on machine learning. We use 17 years of electron observations by Global Positioning System (GPS) satellites. We set up a 3D model for flux prediction in terms of L‐values, MLT, and magnetic latitude. The model gives reliable predictions of the radiation environment in the outer radiation belt and has wide space weather applications. Key Points A machine learning model is created to predict electron flux at MEO for energies 120–600 keV The model requires solar wind parameters and geomagnetic indices as input and does not use persistence MERLIN model yields high accuracy and high correlation with observations (0.8)</description><subject>Algorithms</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Dynamical systems</subject><subject>Earth</subject><subject>Electron density</subject><subject>Electron flux</subject><subject>electrons</subject><subject>empirical modeling</subject><subject>Energetic particles</subject><subject>Energy</subject><subject>Fluctuations</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>Geosynchronous orbits</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Machine learning</subject><subject>magnetosphere</subject><subject>Military satellites</subject><subject>Mission planning</subject><subject>Outer radiation belt</subject><subject>Radiation</subject><subject>Radiation belts</subject><subject>Relativistic effects</subject><subject>Satellites</subject><subject>Solar activity</subject><subject>Solar wind</subject><subject>Solar wind parameters</subject><subject>Space weather</subject><subject>Three dimensional models</subject><subject>Weather</subject><issn>1542-7390</issn><issn>1539-4964</issn><issn>1542-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90M9LwzAUB_AiCs7pzT8g6EEFq_nRNqm3OTodbA62wW6GNEm3jJrOpEX331uph508vQfvw-O9bxBcIviAIE4fMcRwsYIQxwQfBT0URzikJIXHB_1pcOb9tjVRjKNe8D7VyjQfILParfcgK7WsXWXBqGy-gbEgE67e3Hgwa2rtwFwoI2rTzp91WYPbaTafjN_unsAATIXcGKvBRAtnjV2DaaV0eR6cFKL0-uKv9oPlKFsOX8PJ7GU8HExCSSiiocwFo0RRxlhURBhSBBHCMcplgou80DFLVSSITolShZRMKU0ZEixNWM6wIP3gqltb-dpwL02t5UZW1rbfcMRgRAht0XWHdq76bLSv-bZqnG3P4jhKCIUpIXGr7jslXeW90wXfOfMh3J4jyH9T5ocptxx3_MuUev-v5YtVhhFMKPkBMch6qw</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Smirnov, A. G.</creator><creator>Berrendorf, M.</creator><creator>Shprits, Y. Y.</creator><creator>Kronberg, E. A.</creator><creator>Allison, H. J.</creator><creator>Aseev, N. A.</creator><creator>Zhelavskaya, I. S.</creator><creator>Morley, S. K.</creator><creator>Reeves, G. D.</creator><creator>Carver, M. R.</creator><creator>Effenberger, F.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9724-4009</orcidid><orcidid>https://orcid.org/0000-0003-3689-4336</orcidid><orcidid>https://orcid.org/0000-0002-6665-2023</orcidid><orcidid>https://orcid.org/0000-0002-9625-0834</orcidid><orcidid>https://orcid.org/0000-0001-8520-0199</orcidid><orcidid>https://orcid.org/0000-0002-7388-6581</orcidid><orcidid>https://orcid.org/0000-0001-6351-8710</orcidid><orcidid>https://orcid.org/0000-0002-7029-5372</orcidid><orcidid>https://orcid.org/0000-0002-7985-8098</orcidid><orcidid>https://orcid.org/0000-0001-7741-682X</orcidid><orcidid>https://orcid.org/0000-0002-7112-2780</orcidid><orcidid>https://orcid.org/0000000336894336</orcidid><orcidid>https://orcid.org/0000000273886581</orcidid><orcidid>https://orcid.org/0000000197244009</orcidid><orcidid>https://orcid.org/0000000270295372</orcidid><orcidid>https://orcid.org/000000017741682X</orcidid><orcidid>https://orcid.org/0000000185200199</orcidid><orcidid>https://orcid.org/0000000163518710</orcidid><orcidid>https://orcid.org/0000000266652023</orcidid><orcidid>https://orcid.org/0000000296250834</orcidid><orcidid>https://orcid.org/0000000279858098</orcidid><orcidid>https://orcid.org/0000000271122780</orcidid></search><sort><creationdate>202011</creationdate><title>Medium Energy Electron Flux in Earth's Outer Radiation Belt (MERLIN): A Machine Learning Model</title><author>Smirnov, A. G. ; Berrendorf, M. ; Shprits, Y. Y. ; Kronberg, E. A. ; Allison, H. J. ; Aseev, N. A. ; Zhelavskaya, I. S. ; Morley, S. K. ; Reeves, G. D. ; Carver, M. R. ; Effenberger, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3717-cba873d78884f42071011251bc62fbfe589d4a3e93ddfcc8dde781a8968b82a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Dynamical systems</topic><topic>Earth</topic><topic>Electron density</topic><topic>Electron flux</topic><topic>electrons</topic><topic>empirical modeling</topic><topic>Energetic particles</topic><topic>Energy</topic><topic>Fluctuations</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>Geosynchronous orbits</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Machine learning</topic><topic>magnetosphere</topic><topic>Military satellites</topic><topic>Mission planning</topic><topic>Outer radiation belt</topic><topic>Radiation</topic><topic>Radiation belts</topic><topic>Relativistic effects</topic><topic>Satellites</topic><topic>Solar activity</topic><topic>Solar wind</topic><topic>Solar wind parameters</topic><topic>Space weather</topic><topic>Three dimensional models</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, A. G.</creatorcontrib><creatorcontrib>Berrendorf, M.</creatorcontrib><creatorcontrib>Shprits, Y. Y.</creatorcontrib><creatorcontrib>Kronberg, E. A.</creatorcontrib><creatorcontrib>Allison, H. J.</creatorcontrib><creatorcontrib>Aseev, N. A.</creatorcontrib><creatorcontrib>Zhelavskaya, I. S.</creatorcontrib><creatorcontrib>Morley, S. K.</creatorcontrib><creatorcontrib>Reeves, G. D.</creatorcontrib><creatorcontrib>Carver, M. R.</creatorcontrib><creatorcontrib>Effenberger, F.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Space Weather</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, A. G.</au><au>Berrendorf, M.</au><au>Shprits, Y. Y.</au><au>Kronberg, E. A.</au><au>Allison, H. J.</au><au>Aseev, N. A.</au><au>Zhelavskaya, I. S.</au><au>Morley, S. K.</au><au>Reeves, G. D.</au><au>Carver, M. R.</au><au>Effenberger, F.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medium Energy Electron Flux in Earth's Outer Radiation Belt (MERLIN): A Machine Learning Model</atitle><jtitle>Space Weather</jtitle><date>2020-11</date><risdate>2020</risdate><volume>18</volume><issue>11</issue><epage>n/a</epage><issn>1542-7390</issn><issn>1539-4964</issn><eissn>1542-7390</eissn><abstract>The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120–600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on &gt;15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis. Plain Language Summary The radiation belts of the Earth, which are the zones of charged energetic particles trapped by the geomagnetic field, comprise complex and dynamic systems posing a significant threat to a variety of commercial and military satellites. While the inner belt is relatively stable, the outer belt is highly variable and depends substantially on solar activity; therefore, accurate and improved models of electron flux in the outer radiation belt are essential to understand the underlying physical processes. Although many models have been developed for the geostationary orbit and relativistic energies, prediction of electron flux in the 120–600 keV energy range still remains challenging. We present a data‐driven model of the medium energies (120–600 keV) differentialelectron flux in the outer radiation belt based on machine learning. We use 17 years of electron observations by Global Positioning System (GPS) satellites. We set up a 3D model for flux prediction in terms of L‐values, MLT, and magnetic latitude. The model gives reliable predictions of the radiation environment in the outer radiation belt and has wide space weather applications. Key Points A machine learning model is created to predict electron flux at MEO for energies 120–600 keV The model requires solar wind parameters and geomagnetic indices as input and does not use persistence MERLIN model yields high accuracy and high correlation with observations (0.8)</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020SW002532</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9724-4009</orcidid><orcidid>https://orcid.org/0000-0003-3689-4336</orcidid><orcidid>https://orcid.org/0000-0002-6665-2023</orcidid><orcidid>https://orcid.org/0000-0002-9625-0834</orcidid><orcidid>https://orcid.org/0000-0001-8520-0199</orcidid><orcidid>https://orcid.org/0000-0002-7388-6581</orcidid><orcidid>https://orcid.org/0000-0001-6351-8710</orcidid><orcidid>https://orcid.org/0000-0002-7029-5372</orcidid><orcidid>https://orcid.org/0000-0002-7985-8098</orcidid><orcidid>https://orcid.org/0000-0001-7741-682X</orcidid><orcidid>https://orcid.org/0000-0002-7112-2780</orcidid><orcidid>https://orcid.org/0000000336894336</orcidid><orcidid>https://orcid.org/0000000273886581</orcidid><orcidid>https://orcid.org/0000000197244009</orcidid><orcidid>https://orcid.org/0000000270295372</orcidid><orcidid>https://orcid.org/000000017741682X</orcidid><orcidid>https://orcid.org/0000000185200199</orcidid><orcidid>https://orcid.org/0000000163518710</orcidid><orcidid>https://orcid.org/0000000266652023</orcidid><orcidid>https://orcid.org/0000000296250834</orcidid><orcidid>https://orcid.org/0000000279858098</orcidid><orcidid>https://orcid.org/0000000271122780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1542-7390
ispartof Space Weather, 2020-11, Vol.18 (11), p.n/a
issn 1542-7390
1539-4964
1542-7390
language eng
recordid cdi_osti_scitechconnect_1804337
source Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
ASTRONOMY AND ASTROPHYSICS
Dynamical systems
Earth
Electron density
Electron flux
electrons
empirical modeling
Energetic particles
Energy
Fluctuations
Geomagnetic field
Geomagnetism
Geosynchronous orbits
Global positioning systems
GPS
Machine learning
magnetosphere
Military satellites
Mission planning
Outer radiation belt
Radiation
Radiation belts
Relativistic effects
Satellites
Solar activity
Solar wind
Solar wind parameters
Space weather
Three dimensional models
Weather
title Medium Energy Electron Flux in Earth's Outer Radiation Belt (MERLIN): A Machine Learning Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medium%20Energy%20Electron%20Flux%20in%20Earth's%20Outer%20Radiation%20Belt%20(MERLIN):%20A%20Machine%20Learning%20Model&rft.jtitle=Space%20Weather&rft.au=Smirnov,%20A.%20G.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-11&rft.volume=18&rft.issue=11&rft.epage=n/a&rft.issn=1542-7390&rft.eissn=1542-7390&rft_id=info:doi/10.1029/2020SW002532&rft_dat=%3Cproquest_osti_%3E2463709335%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463709335&rft_id=info:pmid/&rfr_iscdi=true