A Low‐Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes
Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing, and sensing. While great progress has been achieved, polymer‐based mixed conductors frequently experience significant volumetric changes during ion uptake/rejection, i.e., during doping/de‐doping and...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-01, Vol.33 (2), p.e2005723-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e2005723 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Nicolini, Tommaso Surgailis, Jokubas Savva, Achilleas Scaccabarozzi, Alberto D. Nakar, Rana Thuau, Damien Wantz, Guillaume Richter, Lee J. Dautel, Olivier Hadziioannou, Georges Stingelin, Natalie |
description | Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing, and sensing. While great progress has been achieved, polymer‐based mixed conductors frequently experience significant volumetric changes during ion uptake/rejection, i.e., during doping/de‐doping and charging/discharging. Although ion dynamics may be enhanced in expanded networks, these volumetric changes can have undesirable consequences, e.g., negatively affecting hole/electron conduction and severely shortening device lifetime. Here, the authors present a new material poly[3‐(6‐hydroxy)hexylthiophene] (P3HHT) that is able to transport ions and electrons/holes, as tested in electrochemical absorption spectroscopy and organic electrochemical transistors, and that exhibits low swelling, attributed to the hydroxylated alkyl side‐chain functionalization. P3HHT displays a thickness change upon passive swelling of only +2.5%, compared to +90% observed for the ubiquitous poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate, and +10 to +15% for polymers such as poly(2‐(3,3′‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)‐[2,2′‐bithiophen]‐5‐yl)thieno[3,2‐b]thiophene) (p[g2T‐TT]). Applying a bias pulse during swelling, this discrepancy becomes even more pronounced, with the thickness of P3HHT films changing by |
doi_str_mv | 10.1002/adma.202005723 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1804222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476817381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5133-ac641c14ce293a925a2a391425c6b3d73ea83bb3452c31035c63af29063d00cf3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhyhFFcIFDlrHHdpJjtBSKlKpIwNnyOl7qKokXO2HZG4_AM_IkOEpZJC6cLI2--TS_f0KeUlhTAPZat71eM2AAomB4j6yoYDTnUIn7ZAUVirySvDwjj2K8BYBKgnxIzhCZoFLIFWnqrPGHXz9-fjzYrnPDl-yD7469Dc5kV-67bbONH9rJjD5k13sb9Dgzbsjqr5P1U8wuOmvGkHZGGx-TBzvdRfvk7j0nn99efNpc5s31u_ebusmNoIi5NpJTQ7mxrEJdMaGZxopyJozcYlug1SVut8gFM0gB0xj1jlUgsQUwOzwnzxevj6NT0bjRmhvjhyGdomgJnDGWoFcLdKM7tQ-u1-GovHbqsm7UPAMEZAWn32hiXy7sPviUK46qd9GkD9HDHFIxLkUhJCtkQl_8g976KQwpbqIKWdICy1m4XigTfIzB7k4XUFBzcWouTp2KSwvP7rTTtrftCf_TVAKqBTi4zh7_o1P1m6v6r_w3xzyh-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476817381</pqid></control><display><type>article</type><title>A Low‐Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nicolini, Tommaso ; Surgailis, Jokubas ; Savva, Achilleas ; Scaccabarozzi, Alberto D. ; Nakar, Rana ; Thuau, Damien ; Wantz, Guillaume ; Richter, Lee J. ; Dautel, Olivier ; Hadziioannou, Georges ; Stingelin, Natalie</creator><creatorcontrib>Nicolini, Tommaso ; Surgailis, Jokubas ; Savva, Achilleas ; Scaccabarozzi, Alberto D. ; Nakar, Rana ; Thuau, Damien ; Wantz, Guillaume ; Richter, Lee J. ; Dautel, Olivier ; Hadziioannou, Georges ; Stingelin, Natalie</creatorcontrib><description>Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing, and sensing. While great progress has been achieved, polymer‐based mixed conductors frequently experience significant volumetric changes during ion uptake/rejection, i.e., during doping/de‐doping and charging/discharging. Although ion dynamics may be enhanced in expanded networks, these volumetric changes can have undesirable consequences, e.g., negatively affecting hole/electron conduction and severely shortening device lifetime. Here, the authors present a new material poly[3‐(6‐hydroxy)hexylthiophene] (P3HHT) that is able to transport ions and electrons/holes, as tested in electrochemical absorption spectroscopy and organic electrochemical transistors, and that exhibits low swelling, attributed to the hydroxylated alkyl side‐chain functionalization. P3HHT displays a thickness change upon passive swelling of only +2.5%, compared to +90% observed for the ubiquitous poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate, and +10 to +15% for polymers such as poly(2‐(3,3′‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)‐[2,2′‐bithiophen]‐5‐yl)thieno[3,2‐b]thiophene) (p[g2T‐TT]). Applying a bias pulse during swelling, this discrepancy becomes even more pronounced, with the thickness of P3HHT films changing by <10% while that of p(g2T‐TT) structures increases by +75 to +80%. Importantly, the initial P3HHT film thickness is essentially restored after de‐doping while p(g2T‐TT) remains substantially swollen. The authors, thus, expand the materials‐design toolbox for the creation of low‐swelling soft mixed conductors with tailored properties and applications in bioelectronics and beyond.
Although beneficial to ion transport, swelling can affect the performance and durability of organic mixed conductor devices. A hydrophilic conjugated polymer, poly[3‐(6‐hydroxy)hexylthiophene] is presented, and its swelling properties are compared to state‐of‐the‐art glycolated organic semiconductors for bioelectronics. Hydroxyl functionalization of poly(thiophene) backbone minimizes swelling while still allowing good ion uptake, resulting in robust organic electrochemical transistor operation in aqueous electrolytes.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202005723</identifier><identifier>PMID: 33251656</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Chemical Sciences ; Condensed Matter ; Conductors ; Doping ; Film thickness ; hydrophilic conjugated polymers ; Ion dynamics ; Materials Science ; mixed conduction ; organic electrochemical transistors ; Physics ; poly(3‐(6‐hydroxy)hexylthiophene) ; Polystyrene resins ; Service life assessment ; Swelling ; Transistors</subject><ispartof>Advanced materials (Weinheim), 2021-01, Vol.33 (2), p.e2005723-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5133-ac641c14ce293a925a2a391425c6b3d73ea83bb3452c31035c63af29063d00cf3</citedby><cites>FETCH-LOGICAL-c5133-ac641c14ce293a925a2a391425c6b3d73ea83bb3452c31035c63af29063d00cf3</cites><orcidid>0000-0002-1414-4545 ; 0000-0003-2327-5376 ; 0000-0001-6956-2210 ; 0000-0002-3031-3687 ; 0000-0002-7377-6040 ; 0000000214144545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202005723$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202005723$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33251656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03032741$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1804222$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicolini, Tommaso</creatorcontrib><creatorcontrib>Surgailis, Jokubas</creatorcontrib><creatorcontrib>Savva, Achilleas</creatorcontrib><creatorcontrib>Scaccabarozzi, Alberto D.</creatorcontrib><creatorcontrib>Nakar, Rana</creatorcontrib><creatorcontrib>Thuau, Damien</creatorcontrib><creatorcontrib>Wantz, Guillaume</creatorcontrib><creatorcontrib>Richter, Lee J.</creatorcontrib><creatorcontrib>Dautel, Olivier</creatorcontrib><creatorcontrib>Hadziioannou, Georges</creatorcontrib><creatorcontrib>Stingelin, Natalie</creatorcontrib><title>A Low‐Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing, and sensing. While great progress has been achieved, polymer‐based mixed conductors frequently experience significant volumetric changes during ion uptake/rejection, i.e., during doping/de‐doping and charging/discharging. Although ion dynamics may be enhanced in expanded networks, these volumetric changes can have undesirable consequences, e.g., negatively affecting hole/electron conduction and severely shortening device lifetime. Here, the authors present a new material poly[3‐(6‐hydroxy)hexylthiophene] (P3HHT) that is able to transport ions and electrons/holes, as tested in electrochemical absorption spectroscopy and organic electrochemical transistors, and that exhibits low swelling, attributed to the hydroxylated alkyl side‐chain functionalization. P3HHT displays a thickness change upon passive swelling of only +2.5%, compared to +90% observed for the ubiquitous poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate, and +10 to +15% for polymers such as poly(2‐(3,3′‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)‐[2,2′‐bithiophen]‐5‐yl)thieno[3,2‐b]thiophene) (p[g2T‐TT]). Applying a bias pulse during swelling, this discrepancy becomes even more pronounced, with the thickness of P3HHT films changing by <10% while that of p(g2T‐TT) structures increases by +75 to +80%. Importantly, the initial P3HHT film thickness is essentially restored after de‐doping while p(g2T‐TT) remains substantially swollen. The authors, thus, expand the materials‐design toolbox for the creation of low‐swelling soft mixed conductors with tailored properties and applications in bioelectronics and beyond.
Although beneficial to ion transport, swelling can affect the performance and durability of organic mixed conductor devices. A hydrophilic conjugated polymer, poly[3‐(6‐hydroxy)hexylthiophene] is presented, and its swelling properties are compared to state‐of‐the‐art glycolated organic semiconductors for bioelectronics. Hydroxyl functionalization of poly(thiophene) backbone minimizes swelling while still allowing good ion uptake, resulting in robust organic electrochemical transistor operation in aqueous electrolytes.</description><subject>Aqueous electrolytes</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Conductors</subject><subject>Doping</subject><subject>Film thickness</subject><subject>hydrophilic conjugated polymers</subject><subject>Ion dynamics</subject><subject>Materials Science</subject><subject>mixed conduction</subject><subject>organic electrochemical transistors</subject><subject>Physics</subject><subject>poly(3‐(6‐hydroxy)hexylthiophene)</subject><subject>Polystyrene resins</subject><subject>Service life assessment</subject><subject>Swelling</subject><subject>Transistors</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EokvhyhFFcIFDlrHHdpJjtBSKlKpIwNnyOl7qKokXO2HZG4_AM_IkOEpZJC6cLI2--TS_f0KeUlhTAPZat71eM2AAomB4j6yoYDTnUIn7ZAUVirySvDwjj2K8BYBKgnxIzhCZoFLIFWnqrPGHXz9-fjzYrnPDl-yD7469Dc5kV-67bbONH9rJjD5k13sb9Dgzbsjqr5P1U8wuOmvGkHZGGx-TBzvdRfvk7j0nn99efNpc5s31u_ebusmNoIi5NpJTQ7mxrEJdMaGZxopyJozcYlug1SVut8gFM0gB0xj1jlUgsQUwOzwnzxevj6NT0bjRmhvjhyGdomgJnDGWoFcLdKM7tQ-u1-GovHbqsm7UPAMEZAWn32hiXy7sPviUK46qd9GkD9HDHFIxLkUhJCtkQl_8g976KQwpbqIKWdICy1m4XigTfIzB7k4XUFBzcWouTp2KSwvP7rTTtrftCf_TVAKqBTi4zh7_o1P1m6v6r_w3xzyh-g</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Nicolini, Tommaso</creator><creator>Surgailis, Jokubas</creator><creator>Savva, Achilleas</creator><creator>Scaccabarozzi, Alberto D.</creator><creator>Nakar, Rana</creator><creator>Thuau, Damien</creator><creator>Wantz, Guillaume</creator><creator>Richter, Lee J.</creator><creator>Dautel, Olivier</creator><creator>Hadziioannou, Georges</creator><creator>Stingelin, Natalie</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1414-4545</orcidid><orcidid>https://orcid.org/0000-0003-2327-5376</orcidid><orcidid>https://orcid.org/0000-0001-6956-2210</orcidid><orcidid>https://orcid.org/0000-0002-3031-3687</orcidid><orcidid>https://orcid.org/0000-0002-7377-6040</orcidid><orcidid>https://orcid.org/0000000214144545</orcidid></search><sort><creationdate>20210101</creationdate><title>A Low‐Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes</title><author>Nicolini, Tommaso ; Surgailis, Jokubas ; Savva, Achilleas ; Scaccabarozzi, Alberto D. ; Nakar, Rana ; Thuau, Damien ; Wantz, Guillaume ; Richter, Lee J. ; Dautel, Olivier ; Hadziioannou, Georges ; Stingelin, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5133-ac641c14ce293a925a2a391425c6b3d73ea83bb3452c31035c63af29063d00cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous electrolytes</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Conductors</topic><topic>Doping</topic><topic>Film thickness</topic><topic>hydrophilic conjugated polymers</topic><topic>Ion dynamics</topic><topic>Materials Science</topic><topic>mixed conduction</topic><topic>organic electrochemical transistors</topic><topic>Physics</topic><topic>poly(3‐(6‐hydroxy)hexylthiophene)</topic><topic>Polystyrene resins</topic><topic>Service life assessment</topic><topic>Swelling</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolini, Tommaso</creatorcontrib><creatorcontrib>Surgailis, Jokubas</creatorcontrib><creatorcontrib>Savva, Achilleas</creatorcontrib><creatorcontrib>Scaccabarozzi, Alberto D.</creatorcontrib><creatorcontrib>Nakar, Rana</creatorcontrib><creatorcontrib>Thuau, Damien</creatorcontrib><creatorcontrib>Wantz, Guillaume</creatorcontrib><creatorcontrib>Richter, Lee J.</creatorcontrib><creatorcontrib>Dautel, Olivier</creatorcontrib><creatorcontrib>Hadziioannou, Georges</creatorcontrib><creatorcontrib>Stingelin, Natalie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolini, Tommaso</au><au>Surgailis, Jokubas</au><au>Savva, Achilleas</au><au>Scaccabarozzi, Alberto D.</au><au>Nakar, Rana</au><au>Thuau, Damien</au><au>Wantz, Guillaume</au><au>Richter, Lee J.</au><au>Dautel, Olivier</au><au>Hadziioannou, Georges</au><au>Stingelin, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low‐Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><spage>e2005723</spage><epage>n/a</epage><pages>e2005723-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing, and sensing. While great progress has been achieved, polymer‐based mixed conductors frequently experience significant volumetric changes during ion uptake/rejection, i.e., during doping/de‐doping and charging/discharging. Although ion dynamics may be enhanced in expanded networks, these volumetric changes can have undesirable consequences, e.g., negatively affecting hole/electron conduction and severely shortening device lifetime. Here, the authors present a new material poly[3‐(6‐hydroxy)hexylthiophene] (P3HHT) that is able to transport ions and electrons/holes, as tested in electrochemical absorption spectroscopy and organic electrochemical transistors, and that exhibits low swelling, attributed to the hydroxylated alkyl side‐chain functionalization. P3HHT displays a thickness change upon passive swelling of only +2.5%, compared to +90% observed for the ubiquitous poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate, and +10 to +15% for polymers such as poly(2‐(3,3′‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)‐[2,2′‐bithiophen]‐5‐yl)thieno[3,2‐b]thiophene) (p[g2T‐TT]). Applying a bias pulse during swelling, this discrepancy becomes even more pronounced, with the thickness of P3HHT films changing by <10% while that of p(g2T‐TT) structures increases by +75 to +80%. Importantly, the initial P3HHT film thickness is essentially restored after de‐doping while p(g2T‐TT) remains substantially swollen. The authors, thus, expand the materials‐design toolbox for the creation of low‐swelling soft mixed conductors with tailored properties and applications in bioelectronics and beyond.
Although beneficial to ion transport, swelling can affect the performance and durability of organic mixed conductor devices. A hydrophilic conjugated polymer, poly[3‐(6‐hydroxy)hexylthiophene] is presented, and its swelling properties are compared to state‐of‐the‐art glycolated organic semiconductors for bioelectronics. Hydroxyl functionalization of poly(thiophene) backbone minimizes swelling while still allowing good ion uptake, resulting in robust organic electrochemical transistor operation in aqueous electrolytes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33251656</pmid><doi>10.1002/adma.202005723</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1414-4545</orcidid><orcidid>https://orcid.org/0000-0003-2327-5376</orcidid><orcidid>https://orcid.org/0000-0001-6956-2210</orcidid><orcidid>https://orcid.org/0000-0002-3031-3687</orcidid><orcidid>https://orcid.org/0000-0002-7377-6040</orcidid><orcidid>https://orcid.org/0000000214144545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-01, Vol.33 (2), p.e2005723-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1804222 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aqueous electrolytes Chemical Sciences Condensed Matter Conductors Doping Film thickness hydrophilic conjugated polymers Ion dynamics Materials Science mixed conduction organic electrochemical transistors Physics poly(3‐(6‐hydroxy)hexylthiophene) Polystyrene resins Service life assessment Swelling Transistors |
title | A Low‐Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low%E2%80%90Swelling%20Polymeric%20Mixed%20Conductor%20Operating%20in%20Aqueous%20Electrolytes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Nicolini,%20Tommaso&rft.date=2021-01-01&rft.volume=33&rft.issue=2&rft.spage=e2005723&rft.epage=n/a&rft.pages=e2005723-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202005723&rft_dat=%3Cproquest_osti_%3E2476817381%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476817381&rft_id=info:pmid/33251656&rfr_iscdi=true |