Analysis of Diode Reverse Recovery Effect on ZVS Condition for GaN-Based LLC Resonant Converter

LLC resonant converter can achieve zero voltage switching (ZVS) for primary-side devices and zero current switching (ZCS) for secondary-side rectifiers. However, the reverse recovery and junction capacitance ( C j ) of secondary-side diode critically affect the ZVS condition of primary-side switches...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2019-12, Vol.34 (12), p.11952-11963
Hauptverfasser: Wen, Hao, Gong, Jinwu, Zhao, Xiaonan, Yeh, Chih-Shen, Lai, Jih-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11963
container_issue 12
container_start_page 11952
container_title IEEE transactions on power electronics
container_volume 34
creator Wen, Hao
Gong, Jinwu
Zhao, Xiaonan
Yeh, Chih-Shen
Lai, Jih-Sheng
description LLC resonant converter can achieve zero voltage switching (ZVS) for primary-side devices and zero current switching (ZCS) for secondary-side rectifiers. However, the reverse recovery and junction capacitance ( C j ) of secondary-side diode critically affect the ZVS condition of primary-side switches. The effect of C j has been discussed in literature, but not the reverse recovery. In this paper, the reverse recovery charge ( Q rr ) is converted to an equivalent capacitance (C_{{\rm rr}\_{\rm eq}}) for the study of primary-side ZVS performance. An accurate model during deadtime is derived and further applied to characterize ZVS performance with different reverse recovery charges in different regions. The concept of establishing parameter C total to consider both C j and C_{{\rm rr}\_{\rm eq}} is proposed to evaluate the effect of the secondary-side rectifiers. This concept provides the guideline for diode and synchronous rectification mosfet selection to ensure ZVS condition for LLC converters. To verify the concept and the derived model, a 200/400 V 400 W LLC resonant converter prototype operating from 200 to 700 kHz is built and its ZVS performances with different diodes are compared. Two issues caused by Q rr effect, including V_{\rm ds} reverse charging and asymmetrical waveform during deadtime, are explained thoroughly as well.
doi_str_mv 10.1109/TPEL.2019.2909426
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1803991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8681399</ieee_id><sourcerecordid>2289275384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-842199594186706968b5c03f751ffc64d80526675a33b3eee9e4637b1eb420a83</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4Eve7MSdI0uZx1TqGo6PTCm9BlCXbMZiadsLc3peLVOYHvP_n5EDoHMgEg6nrxPKsmlICaUEUUp-IAjUBxyAiQ4hCNiJR5JpVix-gkxjUhwHMCI6Snbb3ZxyZi7_Bt41cWv9gfG2I_jU_bHs-cs6bDvsUf76-49O2q6Zr0cj7gef2Y3dTRrnBVlSkSfVu3XQ-laGfDKTpy9Sbas785Rm93s0V5n1VP84dyWmWGU9VlklNQKk-FpSiIUEIuc0OYK3Jwzgi-kiSnQhR5zdiSWWuV5YIVS7BLTkkt2RhdDnd97BodTdNZ82l826bmGiRhSkGCrgZoG_z3zsZOr_0uJAFRUyoVLXImeaJgoEzwMQbr9DY0X3XYayC6l6172bqXrf9kp8zFkGlSt39eCgnpY_YLC5l4CA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289275384</pqid></control><display><type>article</type><title>Analysis of Diode Reverse Recovery Effect on ZVS Condition for GaN-Based LLC Resonant Converter</title><source>IEEE Electronic Library (IEL)</source><creator>Wen, Hao ; Gong, Jinwu ; Zhao, Xiaonan ; Yeh, Chih-Shen ; Lai, Jih-Sheng</creator><creatorcontrib>Wen, Hao ; Gong, Jinwu ; Zhao, Xiaonan ; Yeh, Chih-Shen ; Lai, Jih-Sheng ; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description><![CDATA[LLC resonant converter can achieve zero voltage switching (ZVS) for primary-side devices and zero current switching (ZCS) for secondary-side rectifiers. However, the reverse recovery and junction capacitance ( C j ) of secondary-side diode critically affect the ZVS condition of primary-side switches. The effect of C j has been discussed in literature, but not the reverse recovery. In this paper, the reverse recovery charge ( Q rr ) is converted to an equivalent capacitance <inline-formula><tex-math notation="LaTeX">(C_{{\rm rr}\_{\rm eq}})</tex-math></inline-formula> for the study of primary-side ZVS performance. An accurate model during deadtime is derived and further applied to characterize ZVS performance with different reverse recovery charges in different regions. The concept of establishing parameter C total to consider both C j and <inline-formula><tex-math notation="LaTeX">C_{{\rm rr}\_{\rm eq}}</tex-math></inline-formula> is proposed to evaluate the effect of the secondary-side rectifiers. This concept provides the guideline for diode and synchronous rectification mosfet selection to ensure ZVS condition for LLC converters. To verify the concept and the derived model, a 200/400 V 400 W LLC resonant converter prototype operating from 200 to 700 kHz is built and its ZVS performances with different diodes are compared. Two issues caused by Q rr effect, including <inline-formula><tex-math notation="LaTeX">V_{\rm ds}</tex-math></inline-formula> reverse charging and asymmetrical waveform during deadtime, are explained thoroughly as well.]]></description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2019.2909426</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Converters ; Diodes ; ENGINEERING ; Gallium nitride ; Gallium nitrides ; GaN ; LLC converter ; Magnetic resonance ; Magnetic tunneling ; Ozone ; Rectifiers ; Resonant converters ; reverse recovery effect ; Silicon ; Switches ; Switching ; Waveforms ; Zero current switching ; Zero voltage switching ; zero voltage switching (ZVS)</subject><ispartof>IEEE transactions on power electronics, 2019-12, Vol.34 (12), p.11952-11963</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-842199594186706968b5c03f751ffc64d80526675a33b3eee9e4637b1eb420a83</citedby><cites>FETCH-LOGICAL-c429t-842199594186706968b5c03f751ffc64d80526675a33b3eee9e4637b1eb420a83</cites><orcidid>0000-0003-2315-8460 ; 0000-0002-1717-2920 ; 0000-0001-9660-1940 ; 0000-0001-5595-3624 ; 0000000155953624 ; 0000000323158460 ; 0000000217172920 ; 0000000196601940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8681399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8681399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1803991$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Hao</creatorcontrib><creatorcontrib>Gong, Jinwu</creatorcontrib><creatorcontrib>Zhao, Xiaonan</creatorcontrib><creatorcontrib>Yeh, Chih-Shen</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Analysis of Diode Reverse Recovery Effect on ZVS Condition for GaN-Based LLC Resonant Converter</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description><![CDATA[LLC resonant converter can achieve zero voltage switching (ZVS) for primary-side devices and zero current switching (ZCS) for secondary-side rectifiers. However, the reverse recovery and junction capacitance ( C j ) of secondary-side diode critically affect the ZVS condition of primary-side switches. The effect of C j has been discussed in literature, but not the reverse recovery. In this paper, the reverse recovery charge ( Q rr ) is converted to an equivalent capacitance <inline-formula><tex-math notation="LaTeX">(C_{{\rm rr}\_{\rm eq}})</tex-math></inline-formula> for the study of primary-side ZVS performance. An accurate model during deadtime is derived and further applied to characterize ZVS performance with different reverse recovery charges in different regions. The concept of establishing parameter C total to consider both C j and <inline-formula><tex-math notation="LaTeX">C_{{\rm rr}\_{\rm eq}}</tex-math></inline-formula> is proposed to evaluate the effect of the secondary-side rectifiers. This concept provides the guideline for diode and synchronous rectification mosfet selection to ensure ZVS condition for LLC converters. To verify the concept and the derived model, a 200/400 V 400 W LLC resonant converter prototype operating from 200 to 700 kHz is built and its ZVS performances with different diodes are compared. Two issues caused by Q rr effect, including <inline-formula><tex-math notation="LaTeX">V_{\rm ds}</tex-math></inline-formula> reverse charging and asymmetrical waveform during deadtime, are explained thoroughly as well.]]></description><subject>Capacitance</subject><subject>Converters</subject><subject>Diodes</subject><subject>ENGINEERING</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>LLC converter</subject><subject>Magnetic resonance</subject><subject>Magnetic tunneling</subject><subject>Ozone</subject><subject>Rectifiers</subject><subject>Resonant converters</subject><subject>reverse recovery effect</subject><subject>Silicon</subject><subject>Switches</subject><subject>Switching</subject><subject>Waveforms</subject><subject>Zero current switching</subject><subject>Zero voltage switching</subject><subject>zero voltage switching (ZVS)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4Eve7MSdI0uZx1TqGo6PTCm9BlCXbMZiadsLc3peLVOYHvP_n5EDoHMgEg6nrxPKsmlICaUEUUp-IAjUBxyAiQ4hCNiJR5JpVix-gkxjUhwHMCI6Snbb3ZxyZi7_Bt41cWv9gfG2I_jU_bHs-cs6bDvsUf76-49O2q6Zr0cj7gef2Y3dTRrnBVlSkSfVu3XQ-laGfDKTpy9Sbas785Rm93s0V5n1VP84dyWmWGU9VlklNQKk-FpSiIUEIuc0OYK3Jwzgi-kiSnQhR5zdiSWWuV5YIVS7BLTkkt2RhdDnd97BodTdNZ82l826bmGiRhSkGCrgZoG_z3zsZOr_0uJAFRUyoVLXImeaJgoEzwMQbr9DY0X3XYayC6l6172bqXrf9kp8zFkGlSt39eCgnpY_YLC5l4CA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Wen, Hao</creator><creator>Gong, Jinwu</creator><creator>Zhao, Xiaonan</creator><creator>Yeh, Chih-Shen</creator><creator>Lai, Jih-Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2315-8460</orcidid><orcidid>https://orcid.org/0000-0002-1717-2920</orcidid><orcidid>https://orcid.org/0000-0001-9660-1940</orcidid><orcidid>https://orcid.org/0000-0001-5595-3624</orcidid><orcidid>https://orcid.org/0000000155953624</orcidid><orcidid>https://orcid.org/0000000323158460</orcidid><orcidid>https://orcid.org/0000000217172920</orcidid><orcidid>https://orcid.org/0000000196601940</orcidid></search><sort><creationdate>20191201</creationdate><title>Analysis of Diode Reverse Recovery Effect on ZVS Condition for GaN-Based LLC Resonant Converter</title><author>Wen, Hao ; Gong, Jinwu ; Zhao, Xiaonan ; Yeh, Chih-Shen ; Lai, Jih-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-842199594186706968b5c03f751ffc64d80526675a33b3eee9e4637b1eb420a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capacitance</topic><topic>Converters</topic><topic>Diodes</topic><topic>ENGINEERING</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>LLC converter</topic><topic>Magnetic resonance</topic><topic>Magnetic tunneling</topic><topic>Ozone</topic><topic>Rectifiers</topic><topic>Resonant converters</topic><topic>reverse recovery effect</topic><topic>Silicon</topic><topic>Switches</topic><topic>Switching</topic><topic>Waveforms</topic><topic>Zero current switching</topic><topic>Zero voltage switching</topic><topic>zero voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Hao</creatorcontrib><creatorcontrib>Gong, Jinwu</creatorcontrib><creatorcontrib>Zhao, Xiaonan</creatorcontrib><creatorcontrib>Yeh, Chih-Shen</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen, Hao</au><au>Gong, Jinwu</au><au>Zhao, Xiaonan</au><au>Yeh, Chih-Shen</au><au>Lai, Jih-Sheng</au><aucorp>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Diode Reverse Recovery Effect on ZVS Condition for GaN-Based LLC Resonant Converter</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>34</volume><issue>12</issue><spage>11952</spage><epage>11963</epage><pages>11952-11963</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract><![CDATA[LLC resonant converter can achieve zero voltage switching (ZVS) for primary-side devices and zero current switching (ZCS) for secondary-side rectifiers. However, the reverse recovery and junction capacitance ( C j ) of secondary-side diode critically affect the ZVS condition of primary-side switches. The effect of C j has been discussed in literature, but not the reverse recovery. In this paper, the reverse recovery charge ( Q rr ) is converted to an equivalent capacitance <inline-formula><tex-math notation="LaTeX">(C_{{\rm rr}\_{\rm eq}})</tex-math></inline-formula> for the study of primary-side ZVS performance. An accurate model during deadtime is derived and further applied to characterize ZVS performance with different reverse recovery charges in different regions. The concept of establishing parameter C total to consider both C j and <inline-formula><tex-math notation="LaTeX">C_{{\rm rr}\_{\rm eq}}</tex-math></inline-formula> is proposed to evaluate the effect of the secondary-side rectifiers. This concept provides the guideline for diode and synchronous rectification mosfet selection to ensure ZVS condition for LLC converters. To verify the concept and the derived model, a 200/400 V 400 W LLC resonant converter prototype operating from 200 to 700 kHz is built and its ZVS performances with different diodes are compared. Two issues caused by Q rr effect, including <inline-formula><tex-math notation="LaTeX">V_{\rm ds}</tex-math></inline-formula> reverse charging and asymmetrical waveform during deadtime, are explained thoroughly as well.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2019.2909426</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2315-8460</orcidid><orcidid>https://orcid.org/0000-0002-1717-2920</orcidid><orcidid>https://orcid.org/0000-0001-9660-1940</orcidid><orcidid>https://orcid.org/0000-0001-5595-3624</orcidid><orcidid>https://orcid.org/0000000155953624</orcidid><orcidid>https://orcid.org/0000000323158460</orcidid><orcidid>https://orcid.org/0000000217172920</orcidid><orcidid>https://orcid.org/0000000196601940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2019-12, Vol.34 (12), p.11952-11963
issn 0885-8993
1941-0107
language eng
recordid cdi_osti_scitechconnect_1803991
source IEEE Electronic Library (IEL)
subjects Capacitance
Converters
Diodes
ENGINEERING
Gallium nitride
Gallium nitrides
GaN
LLC converter
Magnetic resonance
Magnetic tunneling
Ozone
Rectifiers
Resonant converters
reverse recovery effect
Silicon
Switches
Switching
Waveforms
Zero current switching
Zero voltage switching
zero voltage switching (ZVS)
title Analysis of Diode Reverse Recovery Effect on ZVS Condition for GaN-Based LLC Resonant Converter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Diode%20Reverse%20Recovery%20Effect%20on%20ZVS%20Condition%20for%20GaN-Based%20LLC%20Resonant%20Converter&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wen,%20Hao&rft.aucorp=Virginia%20Polytechnic%20Inst.%20and%20State%20Univ.%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2019-12-01&rft.volume=34&rft.issue=12&rft.spage=11952&rft.epage=11963&rft.pages=11952-11963&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2019.2909426&rft_dat=%3Cproquest_RIE%3E2289275384%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289275384&rft_id=info:pmid/&rft_ieee_id=8681399&rfr_iscdi=true