Splitting Mono- and Dibranched Alkane Isomers by a Robust Aluminum-Based Metal–Organic Framework Material with Optimal Pore Dimensions

The separation of alkanes with different degrees of branching, particularly mono- and dibranched isomers, represents a challenging yet important industrial process for the production of premium gasoline blending components with high octane number. We report here the separation of linear/monobranched...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-04, Vol.142 (15), p.6925-6929
Hauptverfasser: Yu, Liang, Dong, Xinglong, Gong, Qihan, Acharya, Shree Ram, Lin, Yuhan, Wang, Hao, Han, Yu, Thonhauser, Timo, Li, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The separation of alkanes with different degrees of branching, particularly mono- and dibranched isomers, represents a challenging yet important industrial process for the production of premium gasoline blending components with high octane number. We report here the separation of linear/monobranched and dibranched alkanes through complete molecular sieving by a robust aluminum-based MOF material, Al-bttotb (H3bttotb = 4,4′,4″-(benzene-1,3,5-triyltris­(oxy))­tribenzoicacid). Single- and multicomponent adsorption experiments reveal that the material adsorbs linear and monobranched alkanes, but fully excludes their dibranched isomers. Adsorption sites of alkanes within the MOF channels have been identified by single-crystal X-ray diffraction studies, and the adsorption mechanism was explored through computational calculations and modeling. The highly selective adsorption of the MOF should be attributed to its optimal pore dimensions.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c01769