Electromagnetic coupling in tight-binding models for strongly correlated light and matter
In this work, we discuss the construction of low-energy tight-binding Hamiltonians for condensed-matter systems with a strong coupling to the quantum electromagnetic field. Such Hamiltonians can be obtained by projecting the continuum theory on a given set of Wannier orbitals. However, different rep...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-05, Vol.101 (20), Article 205140 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Physical review. B |
container_volume | 101 |
creator | Li, Jiajun Golez, Denis Mazza, Giacomo Millis, Andrew J. Georges, Antoine Eckstein, Martin |
description | In this work, we discuss the construction of low-energy tight-binding Hamiltonians for condensed-matter systems with a strong coupling to the quantum electromagnetic field. Such Hamiltonians can be obtained by projecting the continuum theory on a given set of Wannier orbitals. However, different representations of the continuum theory lead to different low-energy formulations because different representations may entangle light and matter, transforming orbitals into light-matter hybrid states before the projection. In particular, a multicenter Power-Zienau-Woolley transformation yields a dipolar Hamiltonian which incorporates the light-matter coupling via both Peierls phases and a polarization density. We compare this dipolar gauge Hamiltonian and the straightforward Coulomb gauge Hamiltonian for a one-dimensional solid to describe subcycle light-driven electronic motion in the semiclassical limit and a coupling of the solid to a quantized cavity mode which renormalizes the band-structure into electron-polariton bands. Both descriptions yield the same result when many bands are taken into account but the dipolar Hamiltonian is more accurate when the model is restricted to few electronic bands, while the Coulomb Hamiltonian requires fewer electromagnetic modes. |
doi_str_mv | 10.1103/PhysRevB.101.205140 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1803828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevB_101_205140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-66ac4f38bfec7b3bf69284dce9a748b1dff7898218ef68e1d7992e5d4f1198d33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gZfgfWtms80mRy31AwqK6MHTkk0m28huVpIo9N-7pepphpfnHZiHkEtgSwDGr593-_SC37dLYLAs2QoqdkJmZSVUoZRQp__7ip2TRUofjDEQTNVMzcj7pkeT4zjoLmD2hprx67P3oaM-0Oy7XS5aH-whGEaLfaJujDRNjdD1-4mOEXud0dL-AFMdLB10zhgvyJnTfcLF75yTt7vN6_qh2D7dP65vtoXhss6FENpUjsvWoalb3jqhSllZg0rXlWzBOldLJUuQ6IREsLVSJa5s5QCUtJzPydXx7piyb5LxGc3OjCFMfzUgGZelnCB-hEwcU4roms_oBx33DbDmYLH5szgF0Bwt8h_3mGkI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electromagnetic coupling in tight-binding models for strongly correlated light and matter</title><source>American Physical Society Journals</source><creator>Li, Jiajun ; Golez, Denis ; Mazza, Giacomo ; Millis, Andrew J. ; Georges, Antoine ; Eckstein, Martin</creator><creatorcontrib>Li, Jiajun ; Golez, Denis ; Mazza, Giacomo ; Millis, Andrew J. ; Georges, Antoine ; Eckstein, Martin ; Columbia Univ., New York, NY (United States) ; Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</creatorcontrib><description>In this work, we discuss the construction of low-energy tight-binding Hamiltonians for condensed-matter systems with a strong coupling to the quantum electromagnetic field. Such Hamiltonians can be obtained by projecting the continuum theory on a given set of Wannier orbitals. However, different representations of the continuum theory lead to different low-energy formulations because different representations may entangle light and matter, transforming orbitals into light-matter hybrid states before the projection. In particular, a multicenter Power-Zienau-Woolley transformation yields a dipolar Hamiltonian which incorporates the light-matter coupling via both Peierls phases and a polarization density. We compare this dipolar gauge Hamiltonian and the straightforward Coulomb gauge Hamiltonian for a one-dimensional solid to describe subcycle light-driven electronic motion in the semiclassical limit and a coupling of the solid to a quantized cavity mode which renormalizes the band-structure into electron-polariton bands. Both descriptions yield the same result when many bands are taken into account but the dipolar Hamiltonian is more accurate when the model is restricted to few electronic bands, while the Coulomb Hamiltonian requires fewer electromagnetic modes.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.205140</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Materials Science ; Physics</subject><ispartof>Physical review. B, 2020-05, Vol.101 (20), Article 205140</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-66ac4f38bfec7b3bf69284dce9a748b1dff7898218ef68e1d7992e5d4f1198d33</citedby><cites>FETCH-LOGICAL-c387t-66ac4f38bfec7b3bf69284dce9a748b1dff7898218ef68e1d7992e5d4f1198d33</cites><orcidid>0000-0001-6883-7294 ; 0000-0002-6054-2552 ; 0000000168837294 ; 0000000260542552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1803828$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jiajun</creatorcontrib><creatorcontrib>Golez, Denis</creatorcontrib><creatorcontrib>Mazza, Giacomo</creatorcontrib><creatorcontrib>Millis, Andrew J.</creatorcontrib><creatorcontrib>Georges, Antoine</creatorcontrib><creatorcontrib>Eckstein, Martin</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</creatorcontrib><title>Electromagnetic coupling in tight-binding models for strongly correlated light and matter</title><title>Physical review. B</title><description>In this work, we discuss the construction of low-energy tight-binding Hamiltonians for condensed-matter systems with a strong coupling to the quantum electromagnetic field. Such Hamiltonians can be obtained by projecting the continuum theory on a given set of Wannier orbitals. However, different representations of the continuum theory lead to different low-energy formulations because different representations may entangle light and matter, transforming orbitals into light-matter hybrid states before the projection. In particular, a multicenter Power-Zienau-Woolley transformation yields a dipolar Hamiltonian which incorporates the light-matter coupling via both Peierls phases and a polarization density. We compare this dipolar gauge Hamiltonian and the straightforward Coulomb gauge Hamiltonian for a one-dimensional solid to describe subcycle light-driven electronic motion in the semiclassical limit and a coupling of the solid to a quantized cavity mode which renormalizes the band-structure into electron-polariton bands. Both descriptions yield the same result when many bands are taken into account but the dipolar Hamiltonian is more accurate when the model is restricted to few electronic bands, while the Coulomb Hamiltonian requires fewer electromagnetic modes.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Materials Science</subject><subject>Physics</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWGp_gZfgfWtms80mRy31AwqK6MHTkk0m28huVpIo9N-7pepphpfnHZiHkEtgSwDGr593-_SC37dLYLAs2QoqdkJmZSVUoZRQp__7ip2TRUofjDEQTNVMzcj7pkeT4zjoLmD2hprx67P3oaM-0Oy7XS5aH-whGEaLfaJujDRNjdD1-4mOEXud0dL-AFMdLB10zhgvyJnTfcLF75yTt7vN6_qh2D7dP65vtoXhss6FENpUjsvWoalb3jqhSllZg0rXlWzBOldLJUuQ6IREsLVSJa5s5QCUtJzPydXx7piyb5LxGc3OjCFMfzUgGZelnCB-hEwcU4roms_oBx33DbDmYLH5szgF0Bwt8h_3mGkI</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Li, Jiajun</creator><creator>Golez, Denis</creator><creator>Mazza, Giacomo</creator><creator>Millis, Andrew J.</creator><creator>Georges, Antoine</creator><creator>Eckstein, Martin</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6883-7294</orcidid><orcidid>https://orcid.org/0000-0002-6054-2552</orcidid><orcidid>https://orcid.org/0000000168837294</orcidid><orcidid>https://orcid.org/0000000260542552</orcidid></search><sort><creationdate>20200521</creationdate><title>Electromagnetic coupling in tight-binding models for strongly correlated light and matter</title><author>Li, Jiajun ; Golez, Denis ; Mazza, Giacomo ; Millis, Andrew J. ; Georges, Antoine ; Eckstein, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-66ac4f38bfec7b3bf69284dce9a748b1dff7898218ef68e1d7992e5d4f1198d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiajun</creatorcontrib><creatorcontrib>Golez, Denis</creatorcontrib><creatorcontrib>Mazza, Giacomo</creatorcontrib><creatorcontrib>Millis, Andrew J.</creatorcontrib><creatorcontrib>Georges, Antoine</creatorcontrib><creatorcontrib>Eckstein, Martin</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiajun</au><au>Golez, Denis</au><au>Mazza, Giacomo</au><au>Millis, Andrew J.</au><au>Georges, Antoine</au><au>Eckstein, Martin</au><aucorp>Columbia Univ., New York, NY (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic coupling in tight-binding models for strongly correlated light and matter</atitle><jtitle>Physical review. B</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>101</volume><issue>20</issue><artnum>205140</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>In this work, we discuss the construction of low-energy tight-binding Hamiltonians for condensed-matter systems with a strong coupling to the quantum electromagnetic field. Such Hamiltonians can be obtained by projecting the continuum theory on a given set of Wannier orbitals. However, different representations of the continuum theory lead to different low-energy formulations because different representations may entangle light and matter, transforming orbitals into light-matter hybrid states before the projection. In particular, a multicenter Power-Zienau-Woolley transformation yields a dipolar Hamiltonian which incorporates the light-matter coupling via both Peierls phases and a polarization density. We compare this dipolar gauge Hamiltonian and the straightforward Coulomb gauge Hamiltonian for a one-dimensional solid to describe subcycle light-driven electronic motion in the semiclassical limit and a coupling of the solid to a quantized cavity mode which renormalizes the band-structure into electron-polariton bands. Both descriptions yield the same result when many bands are taken into account but the dipolar Hamiltonian is more accurate when the model is restricted to few electronic bands, while the Coulomb Hamiltonian requires fewer electromagnetic modes.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevB.101.205140</doi><orcidid>https://orcid.org/0000-0001-6883-7294</orcidid><orcidid>https://orcid.org/0000-0002-6054-2552</orcidid><orcidid>https://orcid.org/0000000168837294</orcidid><orcidid>https://orcid.org/0000000260542552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-05, Vol.101 (20), Article 205140 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1803828 |
source | American Physical Society Journals |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Materials Science Physics |
title | Electromagnetic coupling in tight-binding models for strongly correlated light and matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20coupling%20in%20tight-binding%20models%20for%20strongly%20correlated%20light%20and%20matter&rft.jtitle=Physical%20review.%20B&rft.au=Li,%20Jiajun&rft.aucorp=Columbia%20Univ.,%20New%20York,%20NY%20(United%20States)&rft.date=2020-05-21&rft.volume=101&rft.issue=20&rft.artnum=205140&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.205140&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevB_101_205140%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |