Encoding an Oscillator into Many Oscillators
An outstanding challenge for quantum information processing using bosonic systems is Gaussian errors such as excitation loss and added thermal noise errors. Thus, bosonic quantum error correction is essential. Most bosonic quantum error correction schemes encode a finite-dimensional logical qubit or...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-08, Vol.125 (8), p.1-080503, Article 080503 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 080503 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Physical review letters |
container_volume | 125 |
creator | Noh, Kyungjoo Girvin, S. M. Jiang, Liang |
description | An outstanding challenge for quantum information processing using bosonic systems is Gaussian errors such as excitation loss and added thermal noise errors. Thus, bosonic quantum error correction is essential. Most bosonic quantum error correction schemes encode a finite-dimensional logical qubit or qudit into noisy bosonic oscillator modes. In this case, however, the infinite-dimensional bosonic nature of the physical system is lost at the error-corrected logical level. On the other hand, there are several proposals for encoding an oscillator mode into many noisy oscillator modes. However, these oscillator-into-oscillators encoding schemes are in the class of Gaussian quantum error correction. Therefore, these codes cannot correct practically relevant Gaussian errors due to the established no-go theorems that state that Gaussian errors cannot be corrected by using only Gaussian resources. Here, we circumvent these no-go results and show that it is possible to correct Gaussian errors by using Gottesman-Kitaev-Preskill (GKP) states as non-Gaussian resources. In particular, we propose a non-Gaussian oscillator-into-oscillators code, namely the GKP two-mode squeezing code, and demonstrate that it can quadratically suppress additive Gaussian noise errors in both the position and momentum quadratures except for a small sublogarithmic correction. Furthermore, we demonstrate that our GKP two-mode squeezing code is near optimal in the weak noise limit by proving via quantum information theoretic tools that quadratic noise suppression is optimal when we use two physical oscillator modes. Lastly, we show that our non-Gaussian oscillator encoding scheme can also be used to correct excitation loss and thermal noise errors, which are dominant error sources in many realistic bosonic systems. |
doi_str_mv | 10.1103/PhysRevLett.125.080503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1803802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438222075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-87a460ed14dfa3c654c682ab40315c335a501bcdd36c006213c2689eed0c1d783</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt_QRa9eHDrTLLJZo9S6gdUKqLnkGZTu6VNapIK_fdG1kPxNDA8vPPOQ8glwggR2N3rch_f7PfUpjRCykcggQM7IgOEuilrxOqYDAAYlg1AfUrOYlwBAFIhB-R24oxvO_dZaFfMounWa518KDqXfPGi3f5gGc_JyUKvo734m0Py8TB5Hz-V09nj8_h-WhrWiFTKWlcCbItVu9DMCF4ZIameV7kDN4xxzQHnpm2ZMACCIjO5S2NtCwbbWrIhuepzfUydyveTNUvjnbMmKZTAJNAM3fTQNvivnY1JbbpobK7qrN9FRasKBdSMNxm9_oeu_C64_EKmmKSUQs0zJXrKBB9jsAu1Dd1Gh71CUL-m1YFplU2r3jT7AbhHcdc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438222075</pqid></control><display><type>article</type><title>Encoding an Oscillator into Many Oscillators</title><source>American Physical Society Journals</source><source>EZB Electronic Journals Library</source><creator>Noh, Kyungjoo ; Girvin, S. M. ; Jiang, Liang</creator><creatorcontrib>Noh, Kyungjoo ; Girvin, S. M. ; Jiang, Liang ; Yale Univ., New Haven, CT (United States)</creatorcontrib><description>An outstanding challenge for quantum information processing using bosonic systems is Gaussian errors such as excitation loss and added thermal noise errors. Thus, bosonic quantum error correction is essential. Most bosonic quantum error correction schemes encode a finite-dimensional logical qubit or qudit into noisy bosonic oscillator modes. In this case, however, the infinite-dimensional bosonic nature of the physical system is lost at the error-corrected logical level. On the other hand, there are several proposals for encoding an oscillator mode into many noisy oscillator modes. However, these oscillator-into-oscillators encoding schemes are in the class of Gaussian quantum error correction. Therefore, these codes cannot correct practically relevant Gaussian errors due to the established no-go theorems that state that Gaussian errors cannot be corrected by using only Gaussian resources. Here, we circumvent these no-go results and show that it is possible to correct Gaussian errors by using Gottesman-Kitaev-Preskill (GKP) states as non-Gaussian resources. In particular, we propose a non-Gaussian oscillator-into-oscillators code, namely the GKP two-mode squeezing code, and demonstrate that it can quadratically suppress additive Gaussian noise errors in both the position and momentum quadratures except for a small sublogarithmic correction. Furthermore, we demonstrate that our GKP two-mode squeezing code is near optimal in the weak noise limit by proving via quantum information theoretic tools that quadratic noise suppression is optimal when we use two physical oscillator modes. Lastly, we show that our non-Gaussian oscillator encoding scheme can also be used to correct excitation loss and thermal noise errors, which are dominant error sources in many realistic bosonic systems.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.080503</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Compressing ; Data processing ; Error correction ; Error correction & detection ; Excitation ; Information theory ; Noise ; Oscillators ; Physics ; Quadratures ; Quantum phenomena ; Qubits (quantum computing) ; Random noise ; Thermal noise</subject><ispartof>Physical review letters, 2020-08, Vol.125 (8), p.1-080503, Article 080503</ispartof><rights>Copyright American Physical Society Aug 21, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-87a460ed14dfa3c654c682ab40315c335a501bcdd36c006213c2689eed0c1d783</citedby><cites>FETCH-LOGICAL-c396t-87a460ed14dfa3c654c682ab40315c335a501bcdd36c006213c2689eed0c1d783</cites><orcidid>0000-0002-6318-8472 ; 0000-0002-0000-9342 ; 0000-0002-6470-5494 ; 0000000264705494 ; 0000000200009342 ; 0000000263188472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1803802$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Noh, Kyungjoo</creatorcontrib><creatorcontrib>Girvin, S. M.</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Yale Univ., New Haven, CT (United States)</creatorcontrib><title>Encoding an Oscillator into Many Oscillators</title><title>Physical review letters</title><description>An outstanding challenge for quantum information processing using bosonic systems is Gaussian errors such as excitation loss and added thermal noise errors. Thus, bosonic quantum error correction is essential. Most bosonic quantum error correction schemes encode a finite-dimensional logical qubit or qudit into noisy bosonic oscillator modes. In this case, however, the infinite-dimensional bosonic nature of the physical system is lost at the error-corrected logical level. On the other hand, there are several proposals for encoding an oscillator mode into many noisy oscillator modes. However, these oscillator-into-oscillators encoding schemes are in the class of Gaussian quantum error correction. Therefore, these codes cannot correct practically relevant Gaussian errors due to the established no-go theorems that state that Gaussian errors cannot be corrected by using only Gaussian resources. Here, we circumvent these no-go results and show that it is possible to correct Gaussian errors by using Gottesman-Kitaev-Preskill (GKP) states as non-Gaussian resources. In particular, we propose a non-Gaussian oscillator-into-oscillators code, namely the GKP two-mode squeezing code, and demonstrate that it can quadratically suppress additive Gaussian noise errors in both the position and momentum quadratures except for a small sublogarithmic correction. Furthermore, we demonstrate that our GKP two-mode squeezing code is near optimal in the weak noise limit by proving via quantum information theoretic tools that quadratic noise suppression is optimal when we use two physical oscillator modes. Lastly, we show that our non-Gaussian oscillator encoding scheme can also be used to correct excitation loss and thermal noise errors, which are dominant error sources in many realistic bosonic systems.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Compressing</subject><subject>Data processing</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Excitation</subject><subject>Information theory</subject><subject>Noise</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Quadratures</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Random noise</subject><subject>Thermal noise</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt_QRa9eHDrTLLJZo9S6gdUKqLnkGZTu6VNapIK_fdG1kPxNDA8vPPOQ8glwggR2N3rch_f7PfUpjRCykcggQM7IgOEuilrxOqYDAAYlg1AfUrOYlwBAFIhB-R24oxvO_dZaFfMounWa518KDqXfPGi3f5gGc_JyUKvo734m0Py8TB5Hz-V09nj8_h-WhrWiFTKWlcCbItVu9DMCF4ZIameV7kDN4xxzQHnpm2ZMACCIjO5S2NtCwbbWrIhuepzfUydyveTNUvjnbMmKZTAJNAM3fTQNvivnY1JbbpobK7qrN9FRasKBdSMNxm9_oeu_C64_EKmmKSUQs0zJXrKBB9jsAu1Dd1Gh71CUL-m1YFplU2r3jT7AbhHcdc</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Noh, Kyungjoo</creator><creator>Girvin, S. M.</creator><creator>Jiang, Liang</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6318-8472</orcidid><orcidid>https://orcid.org/0000-0002-0000-9342</orcidid><orcidid>https://orcid.org/0000-0002-6470-5494</orcidid><orcidid>https://orcid.org/0000000264705494</orcidid><orcidid>https://orcid.org/0000000200009342</orcidid><orcidid>https://orcid.org/0000000263188472</orcidid></search><sort><creationdate>20200821</creationdate><title>Encoding an Oscillator into Many Oscillators</title><author>Noh, Kyungjoo ; Girvin, S. M. ; Jiang, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-87a460ed14dfa3c654c682ab40315c335a501bcdd36c006213c2689eed0c1d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Compressing</topic><topic>Data processing</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Excitation</topic><topic>Information theory</topic><topic>Noise</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Quadratures</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Random noise</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noh, Kyungjoo</creatorcontrib><creatorcontrib>Girvin, S. M.</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Yale Univ., New Haven, CT (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noh, Kyungjoo</au><au>Girvin, S. M.</au><au>Jiang, Liang</au><aucorp>Yale Univ., New Haven, CT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encoding an Oscillator into Many Oscillators</atitle><jtitle>Physical review letters</jtitle><date>2020-08-21</date><risdate>2020</risdate><volume>125</volume><issue>8</issue><spage>1</spage><epage>080503</epage><pages>1-080503</pages><artnum>080503</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>An outstanding challenge for quantum information processing using bosonic systems is Gaussian errors such as excitation loss and added thermal noise errors. Thus, bosonic quantum error correction is essential. Most bosonic quantum error correction schemes encode a finite-dimensional logical qubit or qudit into noisy bosonic oscillator modes. In this case, however, the infinite-dimensional bosonic nature of the physical system is lost at the error-corrected logical level. On the other hand, there are several proposals for encoding an oscillator mode into many noisy oscillator modes. However, these oscillator-into-oscillators encoding schemes are in the class of Gaussian quantum error correction. Therefore, these codes cannot correct practically relevant Gaussian errors due to the established no-go theorems that state that Gaussian errors cannot be corrected by using only Gaussian resources. Here, we circumvent these no-go results and show that it is possible to correct Gaussian errors by using Gottesman-Kitaev-Preskill (GKP) states as non-Gaussian resources. In particular, we propose a non-Gaussian oscillator-into-oscillators code, namely the GKP two-mode squeezing code, and demonstrate that it can quadratically suppress additive Gaussian noise errors in both the position and momentum quadratures except for a small sublogarithmic correction. Furthermore, we demonstrate that our GKP two-mode squeezing code is near optimal in the weak noise limit by proving via quantum information theoretic tools that quadratic noise suppression is optimal when we use two physical oscillator modes. Lastly, we show that our non-Gaussian oscillator encoding scheme can also be used to correct excitation loss and thermal noise errors, which are dominant error sources in many realistic bosonic systems.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.125.080503</doi><orcidid>https://orcid.org/0000-0002-6318-8472</orcidid><orcidid>https://orcid.org/0000-0002-0000-9342</orcidid><orcidid>https://orcid.org/0000-0002-6470-5494</orcidid><orcidid>https://orcid.org/0000000264705494</orcidid><orcidid>https://orcid.org/0000000200009342</orcidid><orcidid>https://orcid.org/0000000263188472</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-08, Vol.125 (8), p.1-080503, Article 080503 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1803802 |
source | American Physical Society Journals; EZB Electronic Journals Library |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Compressing Data processing Error correction Error correction & detection Excitation Information theory Noise Oscillators Physics Quadratures Quantum phenomena Qubits (quantum computing) Random noise Thermal noise |
title | Encoding an Oscillator into Many Oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encoding%20an%20Oscillator%20into%20Many%20Oscillators&rft.jtitle=Physical%20review%20letters&rft.au=Noh,%20Kyungjoo&rft.aucorp=Yale%20Univ.,%20New%20Haven,%20CT%20(United%20States)&rft.date=2020-08-21&rft.volume=125&rft.issue=8&rft.spage=1&rft.epage=080503&rft.pages=1-080503&rft.artnum=080503&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.080503&rft_dat=%3Cproquest_osti_%3E2438222075%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438222075&rft_id=info:pmid/&rfr_iscdi=true |