Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence
Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this par...
Gespeichert in:
Veröffentlicht in: | Physical review. A 2020-09, Vol.102 (3), Article 033326 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review. A |
container_volume | 102 |
creator | Khatami, Ehsan Guardado-Sanchez, Elmer Spar, Benjamin M. Carrasquilla, Juan Felipe Bakr, Waseem S. Scalettar, Richard T. |
description | Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. We report our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems. |
doi_str_mv | 10.1103/PhysRevA.102.033326 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1802697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_102_033326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c6b99e231269b43eec69dee2efbf18139836c99dc1e6a3322adc1fb70792e77a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWGp_gZvgfmo-aqZZlmKtUFBE3YZM5k3nyUxGk9RSf72Rqqt3uRwuvEPIJWdTzpm8fmwP8Qk-F1POxJRJKYU6ISMxU7rQWs5O_7NQ52QS4xtjjN9oraQakY9XjDvb4Rf6LY0pWL8F2kOyXYeOuiEE6GzCwUeKnqYWaNoPRY09-Jhb29EVhB6L9a6qbKhpP9TQ0T2mltqQsEGHmUGfIA9uwTu4IGeN7SJMfu-YvKxun5frYvNwd79cbAonBU-FU5XWICQXSlczCeCUrgEENFXD51zquVRO69pxUDb_LGyOTVWyUgsoSyvH5Oq4O8SEJjpM4Fo3eA8uGT5nebfMkDxCLgwxBmjMe8DehoPhzPzYNX92cyHM0a78BvJzcio</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence</title><source>American Physical Society Journals</source><creator>Khatami, Ehsan ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Carrasquilla, Juan Felipe ; Bakr, Waseem S. ; Scalettar, Richard T.</creator><creatorcontrib>Khatami, Ehsan ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Carrasquilla, Juan Felipe ; Bakr, Waseem S. ; Scalettar, Richard T. ; Univ. of California, Davis, CA (United States)</creatorcontrib><description>Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. We report our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.102.033326</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Optics ; Physics</subject><ispartof>Physical review. A, 2020-09, Vol.102 (3), Article 033326</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-c6b99e231269b43eec69dee2efbf18139836c99dc1e6a3322adc1fb70792e77a3</citedby><cites>FETCH-LOGICAL-c321t-c6b99e231269b43eec69dee2efbf18139836c99dc1e6a3322adc1fb70792e77a3</cites><orcidid>0000-0003-1901-8262 ; 0000-0003-4256-6232 ; 0000-0003-2360-6710 ; 0000000342566232 ; 0000000319018262 ; 0000000323606710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1802697$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khatami, Ehsan</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Carrasquilla, Juan Felipe</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><creatorcontrib>Scalettar, Richard T.</creatorcontrib><creatorcontrib>Univ. of California, Davis, CA (United States)</creatorcontrib><title>Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence</title><title>Physical review. A</title><description>Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. We report our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Optics</subject><subject>Physics</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWGp_gZvgfmo-aqZZlmKtUFBE3YZM5k3nyUxGk9RSf72Rqqt3uRwuvEPIJWdTzpm8fmwP8Qk-F1POxJRJKYU6ISMxU7rQWs5O_7NQ52QS4xtjjN9oraQakY9XjDvb4Rf6LY0pWL8F2kOyXYeOuiEE6GzCwUeKnqYWaNoPRY09-Jhb29EVhB6L9a6qbKhpP9TQ0T2mltqQsEGHmUGfIA9uwTu4IGeN7SJMfu-YvKxun5frYvNwd79cbAonBU-FU5XWICQXSlczCeCUrgEENFXD51zquVRO69pxUDb_LGyOTVWyUgsoSyvH5Oq4O8SEJjpM4Fo3eA8uGT5nebfMkDxCLgwxBmjMe8DehoPhzPzYNX92cyHM0a78BvJzcio</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>Khatami, Ehsan</creator><creator>Guardado-Sanchez, Elmer</creator><creator>Spar, Benjamin M.</creator><creator>Carrasquilla, Juan Felipe</creator><creator>Bakr, Waseem S.</creator><creator>Scalettar, Richard T.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000-0003-4256-6232</orcidid><orcidid>https://orcid.org/0000-0003-2360-6710</orcidid><orcidid>https://orcid.org/0000000342566232</orcidid><orcidid>https://orcid.org/0000000319018262</orcidid><orcidid>https://orcid.org/0000000323606710</orcidid></search><sort><creationdate>20200917</creationdate><title>Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence</title><author>Khatami, Ehsan ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Carrasquilla, Juan Felipe ; Bakr, Waseem S. ; Scalettar, Richard T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c6b99e231269b43eec69dee2efbf18139836c99dc1e6a3322adc1fb70792e77a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Optics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatami, Ehsan</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Carrasquilla, Juan Felipe</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><creatorcontrib>Scalettar, Richard T.</creatorcontrib><creatorcontrib>Univ. of California, Davis, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatami, Ehsan</au><au>Guardado-Sanchez, Elmer</au><au>Spar, Benjamin M.</au><au>Carrasquilla, Juan Felipe</au><au>Bakr, Waseem S.</au><au>Scalettar, Richard T.</au><aucorp>Univ. of California, Davis, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence</atitle><jtitle>Physical review. A</jtitle><date>2020-09-17</date><risdate>2020</risdate><volume>102</volume><issue>3</issue><artnum>033326</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. We report our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevA.102.033326</doi><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000-0003-4256-6232</orcidid><orcidid>https://orcid.org/0000-0003-2360-6710</orcidid><orcidid>https://orcid.org/0000000342566232</orcidid><orcidid>https://orcid.org/0000000319018262</orcidid><orcidid>https://orcid.org/0000000323606710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical review. A, 2020-09, Vol.102 (3), Article 033326 |
issn | 2469-9926 2469-9934 |
language | eng |
recordid | cdi_osti_scitechconnect_1802697 |
source | American Physical Society Journals |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Optics Physics |
title | Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20strange%20metallic%20correlations%20in%20the%20two-dimensional%20Fermi-Hubbard%20model%20with%20artificial%20intelligence&rft.jtitle=Physical%20review.%20A&rft.au=Khatami,%20Ehsan&rft.aucorp=Univ.%20of%20California,%20Davis,%20CA%20(United%20States)&rft.date=2020-09-17&rft.volume=102&rft.issue=3&rft.artnum=033326&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.102.033326&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_102_033326%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |