Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence

Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2020-09, Vol.102 (3), Article 033326
Hauptverfasser: Khatami, Ehsan, Guardado-Sanchez, Elmer, Spar, Benjamin M., Carrasquilla, Juan Felipe, Bakr, Waseem S., Scalettar, Richard T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physical review. A
container_volume 102
creator Khatami, Ehsan
Guardado-Sanchez, Elmer
Spar, Benjamin M.
Carrasquilla, Juan Felipe
Bakr, Waseem S.
Scalettar, Richard T.
description Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. We report our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems.
doi_str_mv 10.1103/PhysRevA.102.033326
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1802697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_102_033326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c6b99e231269b43eec69dee2efbf18139836c99dc1e6a3322adc1fb70792e77a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWGp_gZvgfmo-aqZZlmKtUFBE3YZM5k3nyUxGk9RSf72Rqqt3uRwuvEPIJWdTzpm8fmwP8Qk-F1POxJRJKYU6ISMxU7rQWs5O_7NQ52QS4xtjjN9oraQakY9XjDvb4Rf6LY0pWL8F2kOyXYeOuiEE6GzCwUeKnqYWaNoPRY09-Jhb29EVhB6L9a6qbKhpP9TQ0T2mltqQsEGHmUGfIA9uwTu4IGeN7SJMfu-YvKxun5frYvNwd79cbAonBU-FU5XWICQXSlczCeCUrgEENFXD51zquVRO69pxUDb_LGyOTVWyUgsoSyvH5Oq4O8SEJjpM4Fo3eA8uGT5nebfMkDxCLgwxBmjMe8DehoPhzPzYNX92cyHM0a78BvJzcio</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence</title><source>American Physical Society Journals</source><creator>Khatami, Ehsan ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Carrasquilla, Juan Felipe ; Bakr, Waseem S. ; Scalettar, Richard T.</creator><creatorcontrib>Khatami, Ehsan ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Carrasquilla, Juan Felipe ; Bakr, Waseem S. ; Scalettar, Richard T. ; Univ. of California, Davis, CA (United States)</creatorcontrib><description>Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. We report our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.102.033326</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Optics ; Physics</subject><ispartof>Physical review. A, 2020-09, Vol.102 (3), Article 033326</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-c6b99e231269b43eec69dee2efbf18139836c99dc1e6a3322adc1fb70792e77a3</citedby><cites>FETCH-LOGICAL-c321t-c6b99e231269b43eec69dee2efbf18139836c99dc1e6a3322adc1fb70792e77a3</cites><orcidid>0000-0003-1901-8262 ; 0000-0003-4256-6232 ; 0000-0003-2360-6710 ; 0000000342566232 ; 0000000319018262 ; 0000000323606710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1802697$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khatami, Ehsan</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Carrasquilla, Juan Felipe</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><creatorcontrib>Scalettar, Richard T.</creatorcontrib><creatorcontrib>Univ. of California, Davis, CA (United States)</creatorcontrib><title>Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence</title><title>Physical review. A</title><description>Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. We report our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Optics</subject><subject>Physics</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWGp_gZvgfmo-aqZZlmKtUFBE3YZM5k3nyUxGk9RSf72Rqqt3uRwuvEPIJWdTzpm8fmwP8Qk-F1POxJRJKYU6ISMxU7rQWs5O_7NQ52QS4xtjjN9oraQakY9XjDvb4Rf6LY0pWL8F2kOyXYeOuiEE6GzCwUeKnqYWaNoPRY09-Jhb29EVhB6L9a6qbKhpP9TQ0T2mltqQsEGHmUGfIA9uwTu4IGeN7SJMfu-YvKxun5frYvNwd79cbAonBU-FU5XWICQXSlczCeCUrgEENFXD51zquVRO69pxUDb_LGyOTVWyUgsoSyvH5Oq4O8SEJjpM4Fo3eA8uGT5nebfMkDxCLgwxBmjMe8DehoPhzPzYNX92cyHM0a78BvJzcio</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>Khatami, Ehsan</creator><creator>Guardado-Sanchez, Elmer</creator><creator>Spar, Benjamin M.</creator><creator>Carrasquilla, Juan Felipe</creator><creator>Bakr, Waseem S.</creator><creator>Scalettar, Richard T.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000-0003-4256-6232</orcidid><orcidid>https://orcid.org/0000-0003-2360-6710</orcidid><orcidid>https://orcid.org/0000000342566232</orcidid><orcidid>https://orcid.org/0000000319018262</orcidid><orcidid>https://orcid.org/0000000323606710</orcidid></search><sort><creationdate>20200917</creationdate><title>Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence</title><author>Khatami, Ehsan ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Carrasquilla, Juan Felipe ; Bakr, Waseem S. ; Scalettar, Richard T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c6b99e231269b43eec69dee2efbf18139836c99dc1e6a3322adc1fb70792e77a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Optics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatami, Ehsan</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Carrasquilla, Juan Felipe</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><creatorcontrib>Scalettar, Richard T.</creatorcontrib><creatorcontrib>Univ. of California, Davis, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatami, Ehsan</au><au>Guardado-Sanchez, Elmer</au><au>Spar, Benjamin M.</au><au>Carrasquilla, Juan Felipe</au><au>Bakr, Waseem S.</au><au>Scalettar, Richard T.</au><aucorp>Univ. of California, Davis, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence</atitle><jtitle>Physical review. A</jtitle><date>2020-09-17</date><risdate>2020</risdate><volume>102</volume><issue>3</issue><artnum>033326</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. We report our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevA.102.033326</doi><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000-0003-4256-6232</orcidid><orcidid>https://orcid.org/0000-0003-2360-6710</orcidid><orcidid>https://orcid.org/0000000342566232</orcidid><orcidid>https://orcid.org/0000000319018262</orcidid><orcidid>https://orcid.org/0000000323606710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2020-09, Vol.102 (3), Article 033326
issn 2469-9926
2469-9934
language eng
recordid cdi_osti_scitechconnect_1802697
source American Physical Society Journals
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Optics
Physics
title Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20strange%20metallic%20correlations%20in%20the%20two-dimensional%20Fermi-Hubbard%20model%20with%20artificial%20intelligence&rft.jtitle=Physical%20review.%20A&rft.au=Khatami,%20Ehsan&rft.aucorp=Univ.%20of%20California,%20Davis,%20CA%20(United%20States)&rft.date=2020-09-17&rft.volume=102&rft.issue=3&rft.artnum=033326&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.102.033326&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_102_033326%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true