Synergistically Chemical and Thermal Coupling between Graphene Oxide and Graphene Fluoride for Enhancing Aluminum Combustion

Metal combustion reaction is highly exothermic and is used in energetic applications, such as propulsion, pyrotechnics, powering micro- and nano-devices, and nanomaterials synthesis. Aluminum (Al) is attracting great interest in those applications because of its high energy density, earth abundance,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-02, Vol.12 (6), p.7451-7458
Hauptverfasser: Jiang, Yue, Deng, Sili, Hong, Sungwook, Tiwari, Subodh, Chen, Haihan, Nomura, Ken-ichi, Kalia, Rajiv K, Nakano, Aiichiro, Vashishta, Priya, Zachariah, Michael R, Zheng, Xiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal combustion reaction is highly exothermic and is used in energetic applications, such as propulsion, pyrotechnics, powering micro- and nano-devices, and nanomaterials synthesis. Aluminum (Al) is attracting great interest in those applications because of its high energy density, earth abundance, and low toxicity. Nevertheless, Al combustion is hard to initiate and progresses slowly and incompletely. On the other hand, ultrathin carbon nanomaterials, such as graphene, graphene oxide (GO), and graphene fluoride (GF), can also undergo exothermic reactions. Herein, we demonstrate that the mixture of GO and GF significantly improves the performance of Al combustion as interactions between GO and GF provide heat and radicals to accelerate Al oxidation. Our experiments and reactive molecular dynamics simulation reveal that GO and GF have strong chemical and thermal couplings through radical reactions and heat released from their oxidation reactions. GO facilitates the dissociation of GF, and GF accelerates the disproportionation and oxidation of GO. When the mixture of GO and GF is added to micron-sized Al particles, their synergistic couplings generate reactive oxidative species, such as CF x and CF x O y , and heat, which greatly accelerates Al combustion. This work demonstrates a new area of using synergistic couplings between ultrathin carbon nanomaterials to accelerate metal combustion and potentially oxidation reactions of other materials.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b20397