Length-Dependence and Spatial Structure of DNA Partitioning into a DNA Liquid

Cells can spatially and temporally control biochemistry using liquid–liquid phase separation to form membrane-less organelles. Synthetic biomolecular liquids offer a means to study the mechanisms of this process, as well as offering a route to the creation of functional biomimetic materials. With th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2019-11, Vol.35 (46), p.14849-14854
Hauptverfasser: Nguyen, Dan T, Jeon, Byoung-jin, Abraham, Gabrielle R, Saleh, Omar A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14854
container_issue 46
container_start_page 14849
container_title Langmuir
container_volume 35
creator Nguyen, Dan T
Jeon, Byoung-jin
Abraham, Gabrielle R
Saleh, Omar A
description Cells can spatially and temporally control biochemistry using liquid–liquid phase separation to form membrane-less organelles. Synthetic biomolecular liquids offer a means to study the mechanisms of this process, as well as offering a route to the creation of functional biomimetic materials. With these goals in mind, we here examine the partitioning of long double-stranded DNA linkers into a liquid composed of small DNA particles (“nanostars”) whose phase separation is driven by base pairing. We find that linker partitioning is length-dependent because of a confinement penalty of inserting long strands within the liquid’s characteristic mesh size. We quantify this entropic-confinement effect using a simple partitioning theory and show that its magnitude is consistent with classic Odijk pictures of confined worm-like chains. Linker partitioning can also lead to inhomogeneous structures: long linkers excluded from the liquid interior tend to preferentially accumulate on the surface of liquid droplets (i.e., acting as surfactants), while linkers forced at high concentrations into the liquid undergo a secondary phase separation, forming metastable droplet-in-droplet structures. Altogether, our work demonstrates the ability to rationally engineer the composition and structure of a model biomolecular liquid.
doi_str_mv 10.1021/acs.langmuir.9b02098
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1802644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308181365</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-e242e7e170baec588b8f8417dad637e6a339d4292e90ad25fee2a8de03a42a193</originalsourceid><addsrcrecordid>eNp9kE1PGzEURS1EBQH6DxAasepm0uePmfEsEbS0UlqQoGvrxX4TjBI72J5F_z1DE7pk9aSrc--TDmPnHOYcBP-KNs_XGFab0ad5vwQBvT5gM94IqBstukM2g07JulOtPGYnOT8DQC9Vf8SOJW-l1gJm7NeCwqo81Te0peAoWKowuOphi8XjunooabRlTFTFobr5fVXdYyq--Bh8WFU-lFjhv3zhX0bvztinAdeZPu_vKfvz_dvj9Y96cXf78_pqUaPiotQklKCOeAdLJNtovdSDVrxz6FrZUYtS9k6JXlAP6EQzEAnUjkCiEsh7ecoud7sxF2-y9YXsk40hkC2GaxCtUhP0ZQdtU3wZKRez8dnSepJGccxGSNBcc9k2E6p2qE0x50SD2Sa_wfTXcDBvts1k27zbNnvbU-1i_2Fcbsj9L73rnQDYAW_15zimMFn5ePMVdBaNsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308181365</pqid></control><display><type>article</type><title>Length-Dependence and Spatial Structure of DNA Partitioning into a DNA Liquid</title><source>American Chemical Society Journals</source><creator>Nguyen, Dan T ; Jeon, Byoung-jin ; Abraham, Gabrielle R ; Saleh, Omar A</creator><creatorcontrib>Nguyen, Dan T ; Jeon, Byoung-jin ; Abraham, Gabrielle R ; Saleh, Omar A ; Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><description>Cells can spatially and temporally control biochemistry using liquid–liquid phase separation to form membrane-less organelles. Synthetic biomolecular liquids offer a means to study the mechanisms of this process, as well as offering a route to the creation of functional biomimetic materials. With these goals in mind, we here examine the partitioning of long double-stranded DNA linkers into a liquid composed of small DNA particles (“nanostars”) whose phase separation is driven by base pairing. We find that linker partitioning is length-dependent because of a confinement penalty of inserting long strands within the liquid’s characteristic mesh size. We quantify this entropic-confinement effect using a simple partitioning theory and show that its magnitude is consistent with classic Odijk pictures of confined worm-like chains. Linker partitioning can also lead to inhomogeneous structures: long linkers excluded from the liquid interior tend to preferentially accumulate on the surface of liquid droplets (i.e., acting as surfactants), while linkers forced at high concentrations into the liquid undergo a secondary phase separation, forming metastable droplet-in-droplet structures. Altogether, our work demonstrates the ability to rationally engineer the composition and structure of a model biomolecular liquid.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.9b02098</identifier><identifier>PMID: 31638820</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science</subject><ispartof>Langmuir, 2019-11, Vol.35 (46), p.14849-14854</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-e242e7e170baec588b8f8417dad637e6a339d4292e90ad25fee2a8de03a42a193</citedby><cites>FETCH-LOGICAL-a412t-e242e7e170baec588b8f8417dad637e6a339d4292e90ad25fee2a8de03a42a193</cites><orcidid>0000-0001-8198-9401 ; 0000-0002-9197-4024 ; 0000000181989401 ; 0000000291974024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.9b02098$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.9b02098$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31638820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1802644$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Dan T</creatorcontrib><creatorcontrib>Jeon, Byoung-jin</creatorcontrib><creatorcontrib>Abraham, Gabrielle R</creatorcontrib><creatorcontrib>Saleh, Omar A</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><title>Length-Dependence and Spatial Structure of DNA Partitioning into a DNA Liquid</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Cells can spatially and temporally control biochemistry using liquid–liquid phase separation to form membrane-less organelles. Synthetic biomolecular liquids offer a means to study the mechanisms of this process, as well as offering a route to the creation of functional biomimetic materials. With these goals in mind, we here examine the partitioning of long double-stranded DNA linkers into a liquid composed of small DNA particles (“nanostars”) whose phase separation is driven by base pairing. We find that linker partitioning is length-dependent because of a confinement penalty of inserting long strands within the liquid’s characteristic mesh size. We quantify this entropic-confinement effect using a simple partitioning theory and show that its magnitude is consistent with classic Odijk pictures of confined worm-like chains. Linker partitioning can also lead to inhomogeneous structures: long linkers excluded from the liquid interior tend to preferentially accumulate on the surface of liquid droplets (i.e., acting as surfactants), while linkers forced at high concentrations into the liquid undergo a secondary phase separation, forming metastable droplet-in-droplet structures. Altogether, our work demonstrates the ability to rationally engineer the composition and structure of a model biomolecular liquid.</description><subject>Chemistry</subject><subject>Materials Science</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PGzEURS1EBQH6DxAasepm0uePmfEsEbS0UlqQoGvrxX4TjBI72J5F_z1DE7pk9aSrc--TDmPnHOYcBP-KNs_XGFab0ad5vwQBvT5gM94IqBstukM2g07JulOtPGYnOT8DQC9Vf8SOJW-l1gJm7NeCwqo81Te0peAoWKowuOphi8XjunooabRlTFTFobr5fVXdYyq--Bh8WFU-lFjhv3zhX0bvztinAdeZPu_vKfvz_dvj9Y96cXf78_pqUaPiotQklKCOeAdLJNtovdSDVrxz6FrZUYtS9k6JXlAP6EQzEAnUjkCiEsh7ecoud7sxF2-y9YXsk40hkC2GaxCtUhP0ZQdtU3wZKRez8dnSepJGccxGSNBcc9k2E6p2qE0x50SD2Sa_wfTXcDBvts1k27zbNnvbU-1i_2Fcbsj9L73rnQDYAW_15zimMFn5ePMVdBaNsg</recordid><startdate>20191119</startdate><enddate>20191119</enddate><creator>Nguyen, Dan T</creator><creator>Jeon, Byoung-jin</creator><creator>Abraham, Gabrielle R</creator><creator>Saleh, Omar A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8198-9401</orcidid><orcidid>https://orcid.org/0000-0002-9197-4024</orcidid><orcidid>https://orcid.org/0000000181989401</orcidid><orcidid>https://orcid.org/0000000291974024</orcidid></search><sort><creationdate>20191119</creationdate><title>Length-Dependence and Spatial Structure of DNA Partitioning into a DNA Liquid</title><author>Nguyen, Dan T ; Jeon, Byoung-jin ; Abraham, Gabrielle R ; Saleh, Omar A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-e242e7e170baec588b8f8417dad637e6a339d4292e90ad25fee2a8de03a42a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Dan T</creatorcontrib><creatorcontrib>Jeon, Byoung-jin</creatorcontrib><creatorcontrib>Abraham, Gabrielle R</creatorcontrib><creatorcontrib>Saleh, Omar A</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Dan T</au><au>Jeon, Byoung-jin</au><au>Abraham, Gabrielle R</au><au>Saleh, Omar A</au><aucorp>Univ. of California, Santa Barbara, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Length-Dependence and Spatial Structure of DNA Partitioning into a DNA Liquid</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2019-11-19</date><risdate>2019</risdate><volume>35</volume><issue>46</issue><spage>14849</spage><epage>14854</epage><pages>14849-14854</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Cells can spatially and temporally control biochemistry using liquid–liquid phase separation to form membrane-less organelles. Synthetic biomolecular liquids offer a means to study the mechanisms of this process, as well as offering a route to the creation of functional biomimetic materials. With these goals in mind, we here examine the partitioning of long double-stranded DNA linkers into a liquid composed of small DNA particles (“nanostars”) whose phase separation is driven by base pairing. We find that linker partitioning is length-dependent because of a confinement penalty of inserting long strands within the liquid’s characteristic mesh size. We quantify this entropic-confinement effect using a simple partitioning theory and show that its magnitude is consistent with classic Odijk pictures of confined worm-like chains. Linker partitioning can also lead to inhomogeneous structures: long linkers excluded from the liquid interior tend to preferentially accumulate on the surface of liquid droplets (i.e., acting as surfactants), while linkers forced at high concentrations into the liquid undergo a secondary phase separation, forming metastable droplet-in-droplet structures. Altogether, our work demonstrates the ability to rationally engineer the composition and structure of a model biomolecular liquid.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31638820</pmid><doi>10.1021/acs.langmuir.9b02098</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8198-9401</orcidid><orcidid>https://orcid.org/0000-0002-9197-4024</orcidid><orcidid>https://orcid.org/0000000181989401</orcidid><orcidid>https://orcid.org/0000000291974024</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2019-11, Vol.35 (46), p.14849-14854
issn 0743-7463
1520-5827
language eng
recordid cdi_osti_scitechconnect_1802644
source American Chemical Society Journals
subjects Chemistry
Materials Science
title Length-Dependence and Spatial Structure of DNA Partitioning into a DNA Liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Length-Dependence%20and%20Spatial%20Structure%20of%20DNA%20Partitioning%20into%20a%20DNA%20Liquid&rft.jtitle=Langmuir&rft.au=Nguyen,%20Dan%20T&rft.aucorp=Univ.%20of%20California,%20Santa%20Barbara,%20CA%20(United%20States)&rft.date=2019-11-19&rft.volume=35&rft.issue=46&rft.spage=14849&rft.epage=14854&rft.pages=14849-14854&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.9b02098&rft_dat=%3Cproquest_osti_%3E2308181365%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308181365&rft_id=info:pmid/31638820&rfr_iscdi=true