A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images
The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar natur...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2020-08, Vol.134 (1), p.173-194 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 1 |
container_start_page | 173 |
container_title | Transport in porous media |
container_volume | 134 |
creator | Korneev, Svyatoslav Arunachalam, Harikesh Onori, Simona Battiato, Ilenia |
description | The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar nature prevents it from capturing the impact that pore-structure anisotropy has on transport. As a result, the complex topology of electrochemical storage devices, combined with the broad range of conditions in which batteries operate, renders the Bruggeman relationship approximate, at best. We propose a self-consistent multiscale framework, based on homogenization theory, which a priori allows one to calculate effective parameters of battery electrodes for a range of transport regimes while accounting for full topological information at the pore scale. The method is based on the solution of a closure problem on a translationally periodic unit cell and generalized to handle locally non-periodic structures. We compare the Bruggeman and the closure-problem predictions of the effective diffusivity for a set of 18,000 synthetically generated images and propose a data-driven polynomial function correlating porosity and effective diffusivity, as calculated from a solution of the closure problem. We test its predictive capability against measured diffusivity values in a LiCoO
2
cathode and a Ni-YSZ anode. |
doi_str_mv | 10.1007/s11242-020-01441-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1802589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424343668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-70d557a0edd5e638e2bcec64635decdc4ba4c14c4bf9abc3cf9a4652690671033</originalsourceid><addsrcrecordid>eNp9kUtPwzAQhC0EEuXxBzhZcDbYseMkx9IHVCqCA5wt19mASxMX26Hi3-MSJG6c5rDfrHZnELpg9JpRWtwExjKREZpRQpkQjOwO0IjlBSdMcnGIRpTJivCK8WN0EsKa0mQrxQjtxniqoyZTbz-hww_9Jtpg9Abw3OsWds6_4-jwLETb6gh41jRgYmLxk3db8NFCwK7BSxvfbN-ShevwrY4R_H7QeNfiB2u8C9H3JvYe8KLVrxDO0FGjNwHOf_UUvcxnz5N7sny8W0zGS2J4ySMpaJ3nhaZQ1zlIXkK2MmCkkDyvwdRGrLQwTCRtKr0y3CQRMs9kRWXBKOen6HLYmy6wKhgbwbwZ13XpC8VKmuVllaCrAdp699FDiGrtet-lu1RKVXDBpSwTlQ3U_p3goVFbn0LxX4pRtW9BDS2o1IL6aUHtkokPppDg7hX83-p_XN8Cu4wz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424343668</pqid></control><display><type>article</type><title>A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Korneev, Svyatoslav ; Arunachalam, Harikesh ; Onori, Simona ; Battiato, Ilenia</creator><creatorcontrib>Korneev, Svyatoslav ; Arunachalam, Harikesh ; Onori, Simona ; Battiato, Ilenia ; San Diego State Univ., CA (United States)</creatorcontrib><description>The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar nature prevents it from capturing the impact that pore-structure anisotropy has on transport. As a result, the complex topology of electrochemical storage devices, combined with the broad range of conditions in which batteries operate, renders the Bruggeman relationship approximate, at best. We propose a self-consistent multiscale framework, based on homogenization theory, which a priori allows one to calculate effective parameters of battery electrodes for a range of transport regimes while accounting for full topological information at the pore scale. The method is based on the solution of a closure problem on a translationally periodic unit cell and generalized to handle locally non-periodic structures. We compare the Bruggeman and the closure-problem predictions of the effective diffusivity for a set of 18,000 synthetically generated images and propose a data-driven polynomial function correlating porosity and effective diffusivity, as calculated from a solution of the closure problem. We test its predictive capability against measured diffusivity values in a LiCoO
2
cathode and a Ni-YSZ anode.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-020-01441-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Civil Engineering ; Classical and Continuum Physics ; Diffusivity ; Earth and Environmental Science ; Earth Sciences ; Engineering ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Lithium-ion batteries ; Parameters ; Periodic structures ; Polynomials ; Porosity ; Rechargeable batteries ; Storage batteries ; Topology ; Unit cell ; Yttria-stabilized zirconia</subject><ispartof>Transport in porous media, 2020-08, Vol.134 (1), p.173-194</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-70d557a0edd5e638e2bcec64635decdc4ba4c14c4bf9abc3cf9a4652690671033</citedby><cites>FETCH-LOGICAL-c383t-70d557a0edd5e638e2bcec64635decdc4ba4c14c4bf9abc3cf9a4652690671033</cites><orcidid>0000-0002-7453-6428 ; 0000000274536428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-020-01441-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-020-01441-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1802589$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Korneev, Svyatoslav</creatorcontrib><creatorcontrib>Arunachalam, Harikesh</creatorcontrib><creatorcontrib>Onori, Simona</creatorcontrib><creatorcontrib>Battiato, Ilenia</creatorcontrib><creatorcontrib>San Diego State Univ., CA (United States)</creatorcontrib><title>A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar nature prevents it from capturing the impact that pore-structure anisotropy has on transport. As a result, the complex topology of electrochemical storage devices, combined with the broad range of conditions in which batteries operate, renders the Bruggeman relationship approximate, at best. We propose a self-consistent multiscale framework, based on homogenization theory, which a priori allows one to calculate effective parameters of battery electrodes for a range of transport regimes while accounting for full topological information at the pore scale. The method is based on the solution of a closure problem on a translationally periodic unit cell and generalized to handle locally non-periodic structures. We compare the Bruggeman and the closure-problem predictions of the effective diffusivity for a set of 18,000 synthetically generated images and propose a data-driven polynomial function correlating porosity and effective diffusivity, as calculated from a solution of the closure problem. We test its predictive capability against measured diffusivity values in a LiCoO
2
cathode and a Ni-YSZ anode.</description><subject>Anisotropy</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Diffusivity</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lithium-ion batteries</subject><subject>Parameters</subject><subject>Periodic structures</subject><subject>Polynomials</subject><subject>Porosity</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Topology</subject><subject>Unit cell</subject><subject>Yttria-stabilized zirconia</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtPwzAQhC0EEuXxBzhZcDbYseMkx9IHVCqCA5wt19mASxMX26Hi3-MSJG6c5rDfrHZnELpg9JpRWtwExjKREZpRQpkQjOwO0IjlBSdMcnGIRpTJivCK8WN0EsKa0mQrxQjtxniqoyZTbz-hww_9Jtpg9Abw3OsWds6_4-jwLETb6gh41jRgYmLxk3db8NFCwK7BSxvfbN-ShevwrY4R_H7QeNfiB2u8C9H3JvYe8KLVrxDO0FGjNwHOf_UUvcxnz5N7sny8W0zGS2J4ySMpaJ3nhaZQ1zlIXkK2MmCkkDyvwdRGrLQwTCRtKr0y3CQRMs9kRWXBKOen6HLYmy6wKhgbwbwZ13XpC8VKmuVllaCrAdp699FDiGrtet-lu1RKVXDBpSwTlQ3U_p3goVFbn0LxX4pRtW9BDS2o1IL6aUHtkokPppDg7hX83-p_XN8Cu4wz</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Korneev, Svyatoslav</creator><creator>Arunachalam, Harikesh</creator><creator>Onori, Simona</creator><creator>Battiato, Ilenia</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7453-6428</orcidid><orcidid>https://orcid.org/0000000274536428</orcidid></search><sort><creationdate>20200801</creationdate><title>A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images</title><author>Korneev, Svyatoslav ; Arunachalam, Harikesh ; Onori, Simona ; Battiato, Ilenia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-70d557a0edd5e638e2bcec64635decdc4ba4c14c4bf9abc3cf9a4652690671033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Diffusivity</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lithium-ion batteries</topic><topic>Parameters</topic><topic>Periodic structures</topic><topic>Polynomials</topic><topic>Porosity</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Topology</topic><topic>Unit cell</topic><topic>Yttria-stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korneev, Svyatoslav</creatorcontrib><creatorcontrib>Arunachalam, Harikesh</creatorcontrib><creatorcontrib>Onori, Simona</creatorcontrib><creatorcontrib>Battiato, Ilenia</creatorcontrib><creatorcontrib>San Diego State Univ., CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korneev, Svyatoslav</au><au>Arunachalam, Harikesh</au><au>Onori, Simona</au><au>Battiato, Ilenia</au><aucorp>San Diego State Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>134</volume><issue>1</issue><spage>173</spage><epage>194</epage><pages>173-194</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar nature prevents it from capturing the impact that pore-structure anisotropy has on transport. As a result, the complex topology of electrochemical storage devices, combined with the broad range of conditions in which batteries operate, renders the Bruggeman relationship approximate, at best. We propose a self-consistent multiscale framework, based on homogenization theory, which a priori allows one to calculate effective parameters of battery electrodes for a range of transport regimes while accounting for full topological information at the pore scale. The method is based on the solution of a closure problem on a translationally periodic unit cell and generalized to handle locally non-periodic structures. We compare the Bruggeman and the closure-problem predictions of the effective diffusivity for a set of 18,000 synthetically generated images and propose a data-driven polynomial function correlating porosity and effective diffusivity, as calculated from a solution of the closure problem. We test its predictive capability against measured diffusivity values in a LiCoO
2
cathode and a Ni-YSZ anode.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-020-01441-w</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7453-6428</orcidid><orcidid>https://orcid.org/0000000274536428</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2020-08, Vol.134 (1), p.173-194 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_osti_scitechconnect_1802589 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Civil Engineering Classical and Continuum Physics Diffusivity Earth and Environmental Science Earth Sciences Engineering Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Lithium-ion batteries Parameters Periodic structures Polynomials Porosity Rechargeable batteries Storage batteries Topology Unit cell Yttria-stabilized zirconia |
title | A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Multiscale%20Framework%20to%20Estimate%20Effective%20Properties%20of%20Lithium-Ion%20Batteries%20from%20Microstructure%20Images&rft.jtitle=Transport%20in%20porous%20media&rft.au=Korneev,%20Svyatoslav&rft.aucorp=San%20Diego%20State%20Univ.,%20CA%20(United%20States)&rft.date=2020-08-01&rft.volume=134&rft.issue=1&rft.spage=173&rft.epage=194&rft.pages=173-194&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-020-01441-w&rft_dat=%3Cproquest_osti_%3E2424343668%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424343668&rft_id=info:pmid/&rfr_iscdi=true |