A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images

The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar natur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2020-08, Vol.134 (1), p.173-194
Hauptverfasser: Korneev, Svyatoslav, Arunachalam, Harikesh, Onori, Simona, Battiato, Ilenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 1
container_start_page 173
container_title Transport in porous media
container_volume 134
creator Korneev, Svyatoslav
Arunachalam, Harikesh
Onori, Simona
Battiato, Ilenia
description The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar nature prevents it from capturing the impact that pore-structure anisotropy has on transport. As a result, the complex topology of electrochemical storage devices, combined with the broad range of conditions in which batteries operate, renders the Bruggeman relationship approximate, at best. We propose a self-consistent multiscale framework, based on homogenization theory, which a priori allows one to calculate effective parameters of battery electrodes for a range of transport regimes while accounting for full topological information at the pore scale. The method is based on the solution of a closure problem on a translationally periodic unit cell and generalized to handle locally non-periodic structures. We compare the Bruggeman and the closure-problem predictions of the effective diffusivity for a set of 18,000 synthetically generated images and propose a data-driven polynomial function correlating porosity and effective diffusivity, as calculated from a solution of the closure problem. We test its predictive capability against measured diffusivity values in a LiCoO 2 cathode and a Ni-YSZ anode.
doi_str_mv 10.1007/s11242-020-01441-w
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1802589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424343668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-70d557a0edd5e638e2bcec64635decdc4ba4c14c4bf9abc3cf9a4652690671033</originalsourceid><addsrcrecordid>eNp9kUtPwzAQhC0EEuXxBzhZcDbYseMkx9IHVCqCA5wt19mASxMX26Hi3-MSJG6c5rDfrHZnELpg9JpRWtwExjKREZpRQpkQjOwO0IjlBSdMcnGIRpTJivCK8WN0EsKa0mQrxQjtxniqoyZTbz-hww_9Jtpg9Abw3OsWds6_4-jwLETb6gh41jRgYmLxk3db8NFCwK7BSxvfbN-ShevwrY4R_H7QeNfiB2u8C9H3JvYe8KLVrxDO0FGjNwHOf_UUvcxnz5N7sny8W0zGS2J4ySMpaJ3nhaZQ1zlIXkK2MmCkkDyvwdRGrLQwTCRtKr0y3CQRMs9kRWXBKOen6HLYmy6wKhgbwbwZ13XpC8VKmuVllaCrAdp699FDiGrtet-lu1RKVXDBpSwTlQ3U_p3goVFbn0LxX4pRtW9BDS2o1IL6aUHtkokPppDg7hX83-p_XN8Cu4wz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424343668</pqid></control><display><type>article</type><title>A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Korneev, Svyatoslav ; Arunachalam, Harikesh ; Onori, Simona ; Battiato, Ilenia</creator><creatorcontrib>Korneev, Svyatoslav ; Arunachalam, Harikesh ; Onori, Simona ; Battiato, Ilenia ; San Diego State Univ., CA (United States)</creatorcontrib><description>The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar nature prevents it from capturing the impact that pore-structure anisotropy has on transport. As a result, the complex topology of electrochemical storage devices, combined with the broad range of conditions in which batteries operate, renders the Bruggeman relationship approximate, at best. We propose a self-consistent multiscale framework, based on homogenization theory, which a priori allows one to calculate effective parameters of battery electrodes for a range of transport regimes while accounting for full topological information at the pore scale. The method is based on the solution of a closure problem on a translationally periodic unit cell and generalized to handle locally non-periodic structures. We compare the Bruggeman and the closure-problem predictions of the effective diffusivity for a set of 18,000 synthetically generated images and propose a data-driven polynomial function correlating porosity and effective diffusivity, as calculated from a solution of the closure problem. We test its predictive capability against measured diffusivity values in a LiCoO 2 cathode and a Ni-YSZ anode.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-020-01441-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Civil Engineering ; Classical and Continuum Physics ; Diffusivity ; Earth and Environmental Science ; Earth Sciences ; Engineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Lithium-ion batteries ; Parameters ; Periodic structures ; Polynomials ; Porosity ; Rechargeable batteries ; Storage batteries ; Topology ; Unit cell ; Yttria-stabilized zirconia</subject><ispartof>Transport in porous media, 2020-08, Vol.134 (1), p.173-194</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-70d557a0edd5e638e2bcec64635decdc4ba4c14c4bf9abc3cf9a4652690671033</citedby><cites>FETCH-LOGICAL-c383t-70d557a0edd5e638e2bcec64635decdc4ba4c14c4bf9abc3cf9a4652690671033</cites><orcidid>0000-0002-7453-6428 ; 0000000274536428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-020-01441-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-020-01441-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1802589$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Korneev, Svyatoslav</creatorcontrib><creatorcontrib>Arunachalam, Harikesh</creatorcontrib><creatorcontrib>Onori, Simona</creatorcontrib><creatorcontrib>Battiato, Ilenia</creatorcontrib><creatorcontrib>San Diego State Univ., CA (United States)</creatorcontrib><title>A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar nature prevents it from capturing the impact that pore-structure anisotropy has on transport. As a result, the complex topology of electrochemical storage devices, combined with the broad range of conditions in which batteries operate, renders the Bruggeman relationship approximate, at best. We propose a self-consistent multiscale framework, based on homogenization theory, which a priori allows one to calculate effective parameters of battery electrodes for a range of transport regimes while accounting for full topological information at the pore scale. The method is based on the solution of a closure problem on a translationally periodic unit cell and generalized to handle locally non-periodic structures. We compare the Bruggeman and the closure-problem predictions of the effective diffusivity for a set of 18,000 synthetically generated images and propose a data-driven polynomial function correlating porosity and effective diffusivity, as calculated from a solution of the closure problem. We test its predictive capability against measured diffusivity values in a LiCoO 2 cathode and a Ni-YSZ anode.</description><subject>Anisotropy</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Diffusivity</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lithium-ion batteries</subject><subject>Parameters</subject><subject>Periodic structures</subject><subject>Polynomials</subject><subject>Porosity</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Topology</subject><subject>Unit cell</subject><subject>Yttria-stabilized zirconia</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtPwzAQhC0EEuXxBzhZcDbYseMkx9IHVCqCA5wt19mASxMX26Hi3-MSJG6c5rDfrHZnELpg9JpRWtwExjKREZpRQpkQjOwO0IjlBSdMcnGIRpTJivCK8WN0EsKa0mQrxQjtxniqoyZTbz-hww_9Jtpg9Abw3OsWds6_4-jwLETb6gh41jRgYmLxk3db8NFCwK7BSxvfbN-ShevwrY4R_H7QeNfiB2u8C9H3JvYe8KLVrxDO0FGjNwHOf_UUvcxnz5N7sny8W0zGS2J4ySMpaJ3nhaZQ1zlIXkK2MmCkkDyvwdRGrLQwTCRtKr0y3CQRMs9kRWXBKOen6HLYmy6wKhgbwbwZ13XpC8VKmuVllaCrAdp699FDiGrtet-lu1RKVXDBpSwTlQ3U_p3goVFbn0LxX4pRtW9BDS2o1IL6aUHtkokPppDg7hX83-p_XN8Cu4wz</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Korneev, Svyatoslav</creator><creator>Arunachalam, Harikesh</creator><creator>Onori, Simona</creator><creator>Battiato, Ilenia</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7453-6428</orcidid><orcidid>https://orcid.org/0000000274536428</orcidid></search><sort><creationdate>20200801</creationdate><title>A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images</title><author>Korneev, Svyatoslav ; Arunachalam, Harikesh ; Onori, Simona ; Battiato, Ilenia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-70d557a0edd5e638e2bcec64635decdc4ba4c14c4bf9abc3cf9a4652690671033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Diffusivity</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lithium-ion batteries</topic><topic>Parameters</topic><topic>Periodic structures</topic><topic>Polynomials</topic><topic>Porosity</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Topology</topic><topic>Unit cell</topic><topic>Yttria-stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korneev, Svyatoslav</creatorcontrib><creatorcontrib>Arunachalam, Harikesh</creatorcontrib><creatorcontrib>Onori, Simona</creatorcontrib><creatorcontrib>Battiato, Ilenia</creatorcontrib><creatorcontrib>San Diego State Univ., CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korneev, Svyatoslav</au><au>Arunachalam, Harikesh</au><au>Onori, Simona</au><au>Battiato, Ilenia</au><aucorp>San Diego State Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>134</volume><issue>1</issue><spage>173</spage><epage>194</epage><pages>173-194</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>The Bruggeman model is routinely employed to determine transport parameters in macroscale electrochemical models. Yet, it relies on both a simplified representation of the pore-scale structure and specific hypotheses on the transport dynamics at the pore scale. Furthermore, its inherent scalar nature prevents it from capturing the impact that pore-structure anisotropy has on transport. As a result, the complex topology of electrochemical storage devices, combined with the broad range of conditions in which batteries operate, renders the Bruggeman relationship approximate, at best. We propose a self-consistent multiscale framework, based on homogenization theory, which a priori allows one to calculate effective parameters of battery electrodes for a range of transport regimes while accounting for full topological information at the pore scale. The method is based on the solution of a closure problem on a translationally periodic unit cell and generalized to handle locally non-periodic structures. We compare the Bruggeman and the closure-problem predictions of the effective diffusivity for a set of 18,000 synthetically generated images and propose a data-driven polynomial function correlating porosity and effective diffusivity, as calculated from a solution of the closure problem. We test its predictive capability against measured diffusivity values in a LiCoO 2 cathode and a Ni-YSZ anode.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-020-01441-w</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7453-6428</orcidid><orcidid>https://orcid.org/0000000274536428</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2020-08, Vol.134 (1), p.173-194
issn 0169-3913
1573-1634
language eng
recordid cdi_osti_scitechconnect_1802589
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Civil Engineering
Classical and Continuum Physics
Diffusivity
Earth and Environmental Science
Earth Sciences
Engineering
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Lithium-ion batteries
Parameters
Periodic structures
Polynomials
Porosity
Rechargeable batteries
Storage batteries
Topology
Unit cell
Yttria-stabilized zirconia
title A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Multiscale%20Framework%20to%20Estimate%20Effective%20Properties%20of%20Lithium-Ion%20Batteries%20from%20Microstructure%20Images&rft.jtitle=Transport%20in%20porous%20media&rft.au=Korneev,%20Svyatoslav&rft.aucorp=San%20Diego%20State%20Univ.,%20CA%20(United%20States)&rft.date=2020-08-01&rft.volume=134&rft.issue=1&rft.spage=173&rft.epage=194&rft.pages=173-194&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-020-01441-w&rft_dat=%3Cproquest_osti_%3E2424343668%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424343668&rft_id=info:pmid/&rfr_iscdi=true