Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation
Fine-tuning of the surface free energy (SFE) of a solid material facilitates its use in a wide range of applications requiring precise control of the ubiquitous presence of liquid on the surface. In this study, we found that the SFE of rare-earth oxide (REO) thin films deposited by atomic layer depo...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-01, Vol.14 (1), p.676-687 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 687 |
---|---|
container_issue | 1 |
container_start_page | 676 |
container_title | ACS nano |
container_volume | 14 |
creator | Oh, Il-Kwon Zeng, Li Kim, Jae-Eun Park, Jong-Seo Kim, Kangsik Lee, Hyunsoo Seo, Seunggi Khan, Mohammad Rizwan Kim, Sangmo Park, Chung Wung Lee, Junghoon Shong, Bonggeun Lee, Zonghoon Bent, Stacey F Kim, Hyungjun Park, Jeong Young Lee, Han-Bo-Ram |
description | Fine-tuning of the surface free energy (SFE) of a solid material facilitates its use in a wide range of applications requiring precise control of the ubiquitous presence of liquid on the surface. In this study, we found that the SFE of rare-earth oxide (REO) thin films deposited by atomic layer deposition (ALD) gradually decreased with increasing film thickness; however, these changes could not be understood by classical interaction models. Herein, the mechanism underlying the aforesaid decrease was systematically studied by measuring contact angles, surface potential, adhesion force, crystalline structures, chemical compositions, and morphologies of the REO films. A growth mode of the REO films was observed: layer-by-layer growth at the initial stage with an amorphous phase and subsequent crystalline island growth, accompanied by a change in the crystalline structure and orientation that affects the SFE. The portion of the surface crystalline facets terminated with (222) and (440) planes evolved with an increase in ALD cycles and film thickness, as an amorphous phase was transformed. Based on this information, we demonstrated an SFE-tuned liquid tweezer with selectivity to target liquid droplets. We believe that the results of this fundamental and practical study, with excellent selectivity to liquids, will have significant impacts on coating technology. |
doi_str_mv | 10.1021/acsnano.9b07430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1801603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338075995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-19567c766477f006a5a354aba892a0e16be1c653f63903ed8714892bc710c3113</originalsourceid><addsrcrecordid>eNp1kEFPGzEQRq2qCChw7q2yeqqEFsZx1l4fUZTQSiCQCBI3a9aZJY527dTelci_76Kk3DjNaOZ93-Ex9l3AlYCJuEaXA4Z4ZWrQUwlf2KkwUhVQqZevH3spTti3nDcApa60OmYnUpiJNlqesuXTkBp0xOeB0uuOz9YYXonHht_0sfOueHLYEr-nHlv-8OZXxJdrH_jCt13m9Y4_rjGPt4QhNzF12PsYztlRg22mi8M8Y8-L-XL2u7h7uP0zu7krUCroC2FKpZ1Waqp1A6CwRFlOscbKTBBIqJqEU6VslDQgaVVpMR1ftdMCnBRCnrGf-96Ye2-z8z25tYshkOutqEAokCP0aw9tU_w7UO5t57OjtsVAcch2ImUFujSmHNHrPepSzDlRY7fJd5h2VoB9920Pvu3B95j4cSgf6o5WH_x_wSNwuQfGpN3EIYVRyKd1_wC2KYkb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338075995</pqid></control><display><type>article</type><title>Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation</title><source>ACS Publications</source><creator>Oh, Il-Kwon ; Zeng, Li ; Kim, Jae-Eun ; Park, Jong-Seo ; Kim, Kangsik ; Lee, Hyunsoo ; Seo, Seunggi ; Khan, Mohammad Rizwan ; Kim, Sangmo ; Park, Chung Wung ; Lee, Junghoon ; Shong, Bonggeun ; Lee, Zonghoon ; Bent, Stacey F ; Kim, Hyungjun ; Park, Jeong Young ; Lee, Han-Bo-Ram</creator><creatorcontrib>Oh, Il-Kwon ; Zeng, Li ; Kim, Jae-Eun ; Park, Jong-Seo ; Kim, Kangsik ; Lee, Hyunsoo ; Seo, Seunggi ; Khan, Mohammad Rizwan ; Kim, Sangmo ; Park, Chung Wung ; Lee, Junghoon ; Shong, Bonggeun ; Lee, Zonghoon ; Bent, Stacey F ; Kim, Hyungjun ; Park, Jeong Young ; Lee, Han-Bo-Ram ; Stanford Univ., CA (United States)</creatorcontrib><description>Fine-tuning of the surface free energy (SFE) of a solid material facilitates its use in a wide range of applications requiring precise control of the ubiquitous presence of liquid on the surface. In this study, we found that the SFE of rare-earth oxide (REO) thin films deposited by atomic layer deposition (ALD) gradually decreased with increasing film thickness; however, these changes could not be understood by classical interaction models. Herein, the mechanism underlying the aforesaid decrease was systematically studied by measuring contact angles, surface potential, adhesion force, crystalline structures, chemical compositions, and morphologies of the REO films. A growth mode of the REO films was observed: layer-by-layer growth at the initial stage with an amorphous phase and subsequent crystalline island growth, accompanied by a change in the crystalline structure and orientation that affects the SFE. The portion of the surface crystalline facets terminated with (222) and (440) planes evolved with an increase in ALD cycles and film thickness, as an amorphous phase was transformed. Based on this information, we demonstrated an SFE-tuned liquid tweezer with selectivity to target liquid droplets. We believe that the results of this fundamental and practical study, with excellent selectivity to liquids, will have significant impacts on coating technology.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b07430</identifier><identifier>PMID: 31927973</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Science & Technology - Other Topics</subject><ispartof>ACS nano, 2020-01, Vol.14 (1), p.676-687</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-19567c766477f006a5a354aba892a0e16be1c653f63903ed8714892bc710c3113</citedby><cites>FETCH-LOGICAL-a360t-19567c766477f006a5a354aba892a0e16be1c653f63903ed8714892bc710c3113</cites><orcidid>0000-0002-5782-6300 ; 0000-0003-3246-4072 ; 0000-0003-2256-8046 ; 0000-0002-1266-3157 ; 0000-0002-7740-1633 ; 0000-0002-9394-4240 ; 0000-0002-0097-6738 ; 0000-0001-6390-0370 ; 0000-0002-1084-5336 ; 0000-0002-8132-3076 ; 0000000212663157 ; 0000000281323076 ; 0000000200976738 ; 0000000257826300 ; 0000000322568046 ; 0000000332464072 ; 0000000293944240 ; 0000000277401633 ; 0000000163900370 ; 0000000210845336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b07430$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b07430$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31927973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1801603$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Il-Kwon</creatorcontrib><creatorcontrib>Zeng, Li</creatorcontrib><creatorcontrib>Kim, Jae-Eun</creatorcontrib><creatorcontrib>Park, Jong-Seo</creatorcontrib><creatorcontrib>Kim, Kangsik</creatorcontrib><creatorcontrib>Lee, Hyunsoo</creatorcontrib><creatorcontrib>Seo, Seunggi</creatorcontrib><creatorcontrib>Khan, Mohammad Rizwan</creatorcontrib><creatorcontrib>Kim, Sangmo</creatorcontrib><creatorcontrib>Park, Chung Wung</creatorcontrib><creatorcontrib>Lee, Junghoon</creatorcontrib><creatorcontrib>Shong, Bonggeun</creatorcontrib><creatorcontrib>Lee, Zonghoon</creatorcontrib><creatorcontrib>Bent, Stacey F</creatorcontrib><creatorcontrib>Kim, Hyungjun</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><creatorcontrib>Lee, Han-Bo-Ram</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Fine-tuning of the surface free energy (SFE) of a solid material facilitates its use in a wide range of applications requiring precise control of the ubiquitous presence of liquid on the surface. In this study, we found that the SFE of rare-earth oxide (REO) thin films deposited by atomic layer deposition (ALD) gradually decreased with increasing film thickness; however, these changes could not be understood by classical interaction models. Herein, the mechanism underlying the aforesaid decrease was systematically studied by measuring contact angles, surface potential, adhesion force, crystalline structures, chemical compositions, and morphologies of the REO films. A growth mode of the REO films was observed: layer-by-layer growth at the initial stage with an amorphous phase and subsequent crystalline island growth, accompanied by a change in the crystalline structure and orientation that affects the SFE. The portion of the surface crystalline facets terminated with (222) and (440) planes evolved with an increase in ALD cycles and film thickness, as an amorphous phase was transformed. Based on this information, we demonstrated an SFE-tuned liquid tweezer with selectivity to target liquid droplets. We believe that the results of this fundamental and practical study, with excellent selectivity to liquids, will have significant impacts on coating technology.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Science & Technology - Other Topics</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPGzEQRq2qCChw7q2yeqqEFsZx1l4fUZTQSiCQCBI3a9aZJY527dTelci_76Kk3DjNaOZ93-Ex9l3AlYCJuEaXA4Z4ZWrQUwlf2KkwUhVQqZevH3spTti3nDcApa60OmYnUpiJNlqesuXTkBp0xOeB0uuOz9YYXonHht_0sfOueHLYEr-nHlv-8OZXxJdrH_jCt13m9Y4_rjGPt4QhNzF12PsYztlRg22mi8M8Y8-L-XL2u7h7uP0zu7krUCroC2FKpZ1Waqp1A6CwRFlOscbKTBBIqJqEU6VslDQgaVVpMR1ftdMCnBRCnrGf-96Ye2-z8z25tYshkOutqEAokCP0aw9tU_w7UO5t57OjtsVAcch2ImUFujSmHNHrPepSzDlRY7fJd5h2VoB9920Pvu3B95j4cSgf6o5WH_x_wSNwuQfGpN3EIYVRyKd1_wC2KYkb</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Oh, Il-Kwon</creator><creator>Zeng, Li</creator><creator>Kim, Jae-Eun</creator><creator>Park, Jong-Seo</creator><creator>Kim, Kangsik</creator><creator>Lee, Hyunsoo</creator><creator>Seo, Seunggi</creator><creator>Khan, Mohammad Rizwan</creator><creator>Kim, Sangmo</creator><creator>Park, Chung Wung</creator><creator>Lee, Junghoon</creator><creator>Shong, Bonggeun</creator><creator>Lee, Zonghoon</creator><creator>Bent, Stacey F</creator><creator>Kim, Hyungjun</creator><creator>Park, Jeong Young</creator><creator>Lee, Han-Bo-Ram</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5782-6300</orcidid><orcidid>https://orcid.org/0000-0003-3246-4072</orcidid><orcidid>https://orcid.org/0000-0003-2256-8046</orcidid><orcidid>https://orcid.org/0000-0002-1266-3157</orcidid><orcidid>https://orcid.org/0000-0002-7740-1633</orcidid><orcidid>https://orcid.org/0000-0002-9394-4240</orcidid><orcidid>https://orcid.org/0000-0002-0097-6738</orcidid><orcidid>https://orcid.org/0000-0001-6390-0370</orcidid><orcidid>https://orcid.org/0000-0002-1084-5336</orcidid><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000000212663157</orcidid><orcidid>https://orcid.org/0000000281323076</orcidid><orcidid>https://orcid.org/0000000200976738</orcidid><orcidid>https://orcid.org/0000000257826300</orcidid><orcidid>https://orcid.org/0000000322568046</orcidid><orcidid>https://orcid.org/0000000332464072</orcidid><orcidid>https://orcid.org/0000000293944240</orcidid><orcidid>https://orcid.org/0000000277401633</orcidid><orcidid>https://orcid.org/0000000163900370</orcidid><orcidid>https://orcid.org/0000000210845336</orcidid></search><sort><creationdate>20200128</creationdate><title>Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation</title><author>Oh, Il-Kwon ; Zeng, Li ; Kim, Jae-Eun ; Park, Jong-Seo ; Kim, Kangsik ; Lee, Hyunsoo ; Seo, Seunggi ; Khan, Mohammad Rizwan ; Kim, Sangmo ; Park, Chung Wung ; Lee, Junghoon ; Shong, Bonggeun ; Lee, Zonghoon ; Bent, Stacey F ; Kim, Hyungjun ; Park, Jeong Young ; Lee, Han-Bo-Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-19567c766477f006a5a354aba892a0e16be1c653f63903ed8714892bc710c3113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Il-Kwon</creatorcontrib><creatorcontrib>Zeng, Li</creatorcontrib><creatorcontrib>Kim, Jae-Eun</creatorcontrib><creatorcontrib>Park, Jong-Seo</creatorcontrib><creatorcontrib>Kim, Kangsik</creatorcontrib><creatorcontrib>Lee, Hyunsoo</creatorcontrib><creatorcontrib>Seo, Seunggi</creatorcontrib><creatorcontrib>Khan, Mohammad Rizwan</creatorcontrib><creatorcontrib>Kim, Sangmo</creatorcontrib><creatorcontrib>Park, Chung Wung</creatorcontrib><creatorcontrib>Lee, Junghoon</creatorcontrib><creatorcontrib>Shong, Bonggeun</creatorcontrib><creatorcontrib>Lee, Zonghoon</creatorcontrib><creatorcontrib>Bent, Stacey F</creatorcontrib><creatorcontrib>Kim, Hyungjun</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><creatorcontrib>Lee, Han-Bo-Ram</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Il-Kwon</au><au>Zeng, Li</au><au>Kim, Jae-Eun</au><au>Park, Jong-Seo</au><au>Kim, Kangsik</au><au>Lee, Hyunsoo</au><au>Seo, Seunggi</au><au>Khan, Mohammad Rizwan</au><au>Kim, Sangmo</au><au>Park, Chung Wung</au><au>Lee, Junghoon</au><au>Shong, Bonggeun</au><au>Lee, Zonghoon</au><au>Bent, Stacey F</au><au>Kim, Hyungjun</au><au>Park, Jeong Young</au><au>Lee, Han-Bo-Ram</au><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>676</spage><epage>687</epage><pages>676-687</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Fine-tuning of the surface free energy (SFE) of a solid material facilitates its use in a wide range of applications requiring precise control of the ubiquitous presence of liquid on the surface. In this study, we found that the SFE of rare-earth oxide (REO) thin films deposited by atomic layer deposition (ALD) gradually decreased with increasing film thickness; however, these changes could not be understood by classical interaction models. Herein, the mechanism underlying the aforesaid decrease was systematically studied by measuring contact angles, surface potential, adhesion force, crystalline structures, chemical compositions, and morphologies of the REO films. A growth mode of the REO films was observed: layer-by-layer growth at the initial stage with an amorphous phase and subsequent crystalline island growth, accompanied by a change in the crystalline structure and orientation that affects the SFE. The portion of the surface crystalline facets terminated with (222) and (440) planes evolved with an increase in ALD cycles and film thickness, as an amorphous phase was transformed. Based on this information, we demonstrated an SFE-tuned liquid tweezer with selectivity to target liquid droplets. We believe that the results of this fundamental and practical study, with excellent selectivity to liquids, will have significant impacts on coating technology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31927973</pmid><doi>10.1021/acsnano.9b07430</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5782-6300</orcidid><orcidid>https://orcid.org/0000-0003-3246-4072</orcidid><orcidid>https://orcid.org/0000-0003-2256-8046</orcidid><orcidid>https://orcid.org/0000-0002-1266-3157</orcidid><orcidid>https://orcid.org/0000-0002-7740-1633</orcidid><orcidid>https://orcid.org/0000-0002-9394-4240</orcidid><orcidid>https://orcid.org/0000-0002-0097-6738</orcidid><orcidid>https://orcid.org/0000-0001-6390-0370</orcidid><orcidid>https://orcid.org/0000-0002-1084-5336</orcidid><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000000212663157</orcidid><orcidid>https://orcid.org/0000000281323076</orcidid><orcidid>https://orcid.org/0000000200976738</orcidid><orcidid>https://orcid.org/0000000257826300</orcidid><orcidid>https://orcid.org/0000000322568046</orcidid><orcidid>https://orcid.org/0000000332464072</orcidid><orcidid>https://orcid.org/0000000293944240</orcidid><orcidid>https://orcid.org/0000000277401633</orcidid><orcidid>https://orcid.org/0000000163900370</orcidid><orcidid>https://orcid.org/0000000210845336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-01, Vol.14 (1), p.676-687 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1801603 |
source | ACS Publications |
subjects | Chemistry Materials Science Science & Technology - Other Topics |
title | Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Energy%20Change%20of%20Atomic-Scale%20Metal%20Oxide%20Thin%20Films%20by%20Phase%20Transformation&rft.jtitle=ACS%20nano&rft.au=Oh,%20Il-Kwon&rft.aucorp=Stanford%20Univ.,%20CA%20(United%20States)&rft.date=2020-01-28&rft.volume=14&rft.issue=1&rft.spage=676&rft.epage=687&rft.pages=676-687&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b07430&rft_dat=%3Cproquest_osti_%3E2338075995%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338075995&rft_id=info:pmid/31927973&rfr_iscdi=true |