Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations
While classical size effects usually lead to a reduced effective thermal conductivity, we report here that nonthermal phonon populations produced by a micro/nanoscale heat source can lead to enhanced heat conduction, exceeding the prediction from Fourier's law. We study nondiffusive thermal tra...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-04, Vol.116 (16) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 116 |
creator | Chiloyan, Vazrik Huberman, Samuel Maznev, Alexei A. Nelson, Keith A. Chen, Gang |
description | While classical size effects usually lead to a reduced effective thermal conductivity, we report here that nonthermal phonon populations produced by a micro/nanoscale heat source can lead to enhanced heat conduction, exceeding the prediction from Fourier's law. We study nondiffusive thermal transport by phonons at small distances within the framework of the Boltzmann transport equation (BTE) and demonstrate that the transport is significantly affected by the distribution of phonons emitted by the source. We discuss analytical solutions of the steady-state BTE for a source with a sinusoidal spatial profile, as well as for a three-dimensional Gaussian “hot spot,” and provide numerical results for single crystal silicon at room temperature. If a micro/nanoscale heat source produces a thermal phonon distribution, it gets hotter than that predicted by the heat diffusion equation; however, if the source predominantly produces low-frequency acoustic phonons with long mean free paths, it may get significantly cooler than that predicted by the heat equation, yielding an enhanced heat transport beyond bulk heat conduction. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1801477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1801477</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18014773</originalsourceid><addsrcrecordid>eNqNjU0KwjAQhYMoWH_uMLgvJsZaXYviAdxLTEcbjTOlmYLHt4IHcPV4vO_jDVRmdFnm1pjtUGVaa5tvdoUZq0lKj74WK2szheca25eLIK2j1HArgG-PWAW6w7WLT6jRCXimqvMSmKDqEISBmOSnvoJveUmOOHkXEZqa-xUabrrovk6aqdHNxYTzX07V4ng47085JwmX5IOgr_sPQi8Xs9VmXZb2L-gDtShJWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chiloyan, Vazrik ; Huberman, Samuel ; Maznev, Alexei A. ; Nelson, Keith A. ; Chen, Gang</creator><creatorcontrib>Chiloyan, Vazrik ; Huberman, Samuel ; Maznev, Alexei A. ; Nelson, Keith A. ; Chen, Gang ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>While classical size effects usually lead to a reduced effective thermal conductivity, we report here that nonthermal phonon populations produced by a micro/nanoscale heat source can lead to enhanced heat conduction, exceeding the prediction from Fourier's law. We study nondiffusive thermal transport by phonons at small distances within the framework of the Boltzmann transport equation (BTE) and demonstrate that the transport is significantly affected by the distribution of phonons emitted by the source. We discuss analytical solutions of the steady-state BTE for a source with a sinusoidal spatial profile, as well as for a three-dimensional Gaussian “hot spot,” and provide numerical results for single crystal silicon at room temperature. If a micro/nanoscale heat source produces a thermal phonon distribution, it gets hotter than that predicted by the heat diffusion equation; however, if the source predominantly produces low-frequency acoustic phonons with long mean free paths, it may get significantly cooler than that predicted by the heat equation, yielding an enhanced heat transport beyond bulk heat conduction.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>ENGINEERING ; Nonequilibrium statistical mechanics ; Phonons ; Physics ; Thermal transport ; Thermodynamic states and processes</subject><ispartof>Applied physics letters, 2020-04, Vol.116 (16)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000239688530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1801477$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiloyan, Vazrik</creatorcontrib><creatorcontrib>Huberman, Samuel</creatorcontrib><creatorcontrib>Maznev, Alexei A.</creatorcontrib><creatorcontrib>Nelson, Keith A.</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations</title><title>Applied physics letters</title><description>While classical size effects usually lead to a reduced effective thermal conductivity, we report here that nonthermal phonon populations produced by a micro/nanoscale heat source can lead to enhanced heat conduction, exceeding the prediction from Fourier's law. We study nondiffusive thermal transport by phonons at small distances within the framework of the Boltzmann transport equation (BTE) and demonstrate that the transport is significantly affected by the distribution of phonons emitted by the source. We discuss analytical solutions of the steady-state BTE for a source with a sinusoidal spatial profile, as well as for a three-dimensional Gaussian “hot spot,” and provide numerical results for single crystal silicon at room temperature. If a micro/nanoscale heat source produces a thermal phonon distribution, it gets hotter than that predicted by the heat diffusion equation; however, if the source predominantly produces low-frequency acoustic phonons with long mean free paths, it may get significantly cooler than that predicted by the heat equation, yielding an enhanced heat transport beyond bulk heat conduction.</description><subject>ENGINEERING</subject><subject>Nonequilibrium statistical mechanics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Thermal transport</subject><subject>Thermodynamic states and processes</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjU0KwjAQhYMoWH_uMLgvJsZaXYviAdxLTEcbjTOlmYLHt4IHcPV4vO_jDVRmdFnm1pjtUGVaa5tvdoUZq0lKj74WK2szheca25eLIK2j1HArgG-PWAW6w7WLT6jRCXimqvMSmKDqEISBmOSnvoJveUmOOHkXEZqa-xUabrrovk6aqdHNxYTzX07V4ng47085JwmX5IOgr_sPQi8Xs9VmXZb2L-gDtShJWQ</recordid><startdate>20200420</startdate><enddate>20200420</enddate><creator>Chiloyan, Vazrik</creator><creator>Huberman, Samuel</creator><creator>Maznev, Alexei A.</creator><creator>Nelson, Keith A.</creator><creator>Chen, Gang</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000239688530</orcidid></search><sort><creationdate>20200420</creationdate><title>Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations</title><author>Chiloyan, Vazrik ; Huberman, Samuel ; Maznev, Alexei A. ; Nelson, Keith A. ; Chen, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18014773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ENGINEERING</topic><topic>Nonequilibrium statistical mechanics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Thermal transport</topic><topic>Thermodynamic states and processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiloyan, Vazrik</creatorcontrib><creatorcontrib>Huberman, Samuel</creatorcontrib><creatorcontrib>Maznev, Alexei A.</creatorcontrib><creatorcontrib>Nelson, Keith A.</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiloyan, Vazrik</au><au>Huberman, Samuel</au><au>Maznev, Alexei A.</au><au>Nelson, Keith A.</au><au>Chen, Gang</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations</atitle><jtitle>Applied physics letters</jtitle><date>2020-04-20</date><risdate>2020</risdate><volume>116</volume><issue>16</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>While classical size effects usually lead to a reduced effective thermal conductivity, we report here that nonthermal phonon populations produced by a micro/nanoscale heat source can lead to enhanced heat conduction, exceeding the prediction from Fourier's law. We study nondiffusive thermal transport by phonons at small distances within the framework of the Boltzmann transport equation (BTE) and demonstrate that the transport is significantly affected by the distribution of phonons emitted by the source. We discuss analytical solutions of the steady-state BTE for a source with a sinusoidal spatial profile, as well as for a three-dimensional Gaussian “hot spot,” and provide numerical results for single crystal silicon at room temperature. If a micro/nanoscale heat source produces a thermal phonon distribution, it gets hotter than that predicted by the heat diffusion equation; however, if the source predominantly produces low-frequency acoustic phonons with long mean free paths, it may get significantly cooler than that predicted by the heat equation, yielding an enhanced heat transport beyond bulk heat conduction.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000239688530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-04, Vol.116 (16) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_1801477 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | ENGINEERING Nonequilibrium statistical mechanics Phonons Physics Thermal transport Thermodynamic states and processes |
title | Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transport%20exceeding%20bulk%20heat%20conduction%20due%20to%20nonthermal%20micro/nanoscale%20phonon%20populations&rft.jtitle=Applied%20physics%20letters&rft.au=Chiloyan,%20Vazrik&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2020-04-20&rft.volume=116&rft.issue=16&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/&rft_dat=%3Costi%3E1801477%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |