Reciprocal cybrids reveal how organellar genomes affect plant phenotypes
Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmoty...
Gespeichert in:
Veröffentlicht in: | Nature plants 2020-01, Vol.6 (1), p.13-21 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | Nature plants |
container_volume | 6 |
creator | Flood, Pádraic J. Theeuwen, Tom P. J. M. Schneeberger, Korbinian Keizer, Paul Kruijer, Willem Severing, Edouard Kouklas, Evangelos Hageman, Jos A. Wijfjes, Raúl Calvo-Baltanas, Vanesa Becker, Frank F. M. Schnabel, Sabine K. Willems, Leo A. J. Ligterink, Wilco van Arkel, Jeroen Mumm, Roland Gualberto, José M. Savage, Linda Kramer, David M. Keurentjes, Joost J. B. van Eeuwijk, Fred Koornneef, Maarten Harbinson, Jeremy Aarts, Mark G. M. Wijnker, Erik |
description | Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype–nucleotype combinations (cybrids)
1
. We generated a panel comprising all possible cybrids of seven
Arabidopsis thaliana
accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype–plasmotype–environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype–plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.
Plants store the vast majority of their DNA in the nucleus, like all other eukaryotes, but also possess two sets of organellar genomes in mitochondria and plastids. Now, researchers have employed haploid inducers to generate reciprocal cybrids to disentangle the specific contributions of organellar variations to plant performance. |
doi_str_mv | 10.1038/s41477-019-0575-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1800730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343231142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-534f26e7a9f03c3703b656b8a01d10bc756918b15b12cd1c9d6f1a41903813183</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMoKuoP8CJFL3qoziRN0xxF1BUWBNFzSNN0t9Jt1qS7sv_elPqF4CXJTJ55M5OXkGOESwRWXIUMMyFSQJkCFzyVW2SfAucpUFFs_zrvkaMQXgEABecsh12yx1AymguxTyZP1jRL74xuE7MpfVOFxNu1jeHcvSfOz3Rn21b7ZGY7t7Ah0XVtTZ8sW93FdR6z_WZpwyHZqXUb7NHnfkBe7m6fbybp9PH-4eZ6mppM5H3KWVbT3Aota2CGCWBlzvOy0IAVQmkEzyUWJfISqanQyCqvUWco48jIsGAH5HTUdaFvVDBNb83cuK6LTSksAASDCF2M0Fy3aumbhfYb5XSjJtdTNeSAMkmRZmsa2fORjb_wtrKhV4smmGHmzrpVUJSxAgohESN69gd9dSvfxXEjlTHKELNBEEfKeBeCt_V3BwhqsE6N1qlonRqsUzLWnHwqr8qFrb4rvoyKAB2BEK-6mfU_T_-v-gEIq6A7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343231142</pqid></control><display><type>article</type><title>Reciprocal cybrids reveal how organellar genomes affect plant phenotypes</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Flood, Pádraic J. ; Theeuwen, Tom P. J. M. ; Schneeberger, Korbinian ; Keizer, Paul ; Kruijer, Willem ; Severing, Edouard ; Kouklas, Evangelos ; Hageman, Jos A. ; Wijfjes, Raúl ; Calvo-Baltanas, Vanesa ; Becker, Frank F. M. ; Schnabel, Sabine K. ; Willems, Leo A. J. ; Ligterink, Wilco ; van Arkel, Jeroen ; Mumm, Roland ; Gualberto, José M. ; Savage, Linda ; Kramer, David M. ; Keurentjes, Joost J. B. ; van Eeuwijk, Fred ; Koornneef, Maarten ; Harbinson, Jeremy ; Aarts, Mark G. M. ; Wijnker, Erik</creator><creatorcontrib>Flood, Pádraic J. ; Theeuwen, Tom P. J. M. ; Schneeberger, Korbinian ; Keizer, Paul ; Kruijer, Willem ; Severing, Edouard ; Kouklas, Evangelos ; Hageman, Jos A. ; Wijfjes, Raúl ; Calvo-Baltanas, Vanesa ; Becker, Frank F. M. ; Schnabel, Sabine K. ; Willems, Leo A. J. ; Ligterink, Wilco ; van Arkel, Jeroen ; Mumm, Roland ; Gualberto, José M. ; Savage, Linda ; Kramer, David M. ; Keurentjes, Joost J. B. ; van Eeuwijk, Fred ; Koornneef, Maarten ; Harbinson, Jeremy ; Aarts, Mark G. M. ; Wijnker, Erik ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype–nucleotype combinations (cybrids)
1
. We generated a panel comprising all possible cybrids of seven
Arabidopsis thaliana
accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype–plasmotype–environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype–plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.
Plants store the vast majority of their DNA in the nucleus, like all other eukaryotes, but also possess two sets of organellar genomes in mitochondria and plastids. Now, researchers have employed haploid inducers to generate reciprocal cybrids to disentangle the specific contributions of organellar variations to plant performance.</description><identifier>ISSN: 2055-0278</identifier><identifier>ISSN: 2055-026X</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-019-0575-9</identifier><identifier>PMID: 31932677</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/47 ; 631/208/480 ; 631/208/711 ; 631/449/1734/2687 ; 631/449/1870 ; 631/449/2686 ; Arabidopsis - genetics ; BASIC BIOLOGICAL SCIENCES ; Biomedical and Life Sciences ; Chloroplast DNA ; Chloroplasts ; Cybrids ; Deoxyribonucleic acid ; DNA ; Environmental conditions ; Epistasis ; Eukaryotes ; Genome, Plant ; Genomes ; Hybridization, Genetic ; Letter ; Life Sciences ; Mitochondria ; Mitochondrial DNA ; Organelles - genetics ; Phenotype ; Phenotypes ; Phenotypic variations ; Plant Sciences ; Plastids ; Vegetal Biology</subject><ispartof>Nature plants, 2020-01, Vol.6 (1), p.13-21</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-534f26e7a9f03c3703b656b8a01d10bc756918b15b12cd1c9d6f1a41903813183</citedby><cites>FETCH-LOGICAL-c476t-534f26e7a9f03c3703b656b8a01d10bc756918b15b12cd1c9d6f1a41903813183</cites><orcidid>0000-0002-5512-0443 ; 0000-0003-0806-2911 ; 0000-0002-7196-9754 ; 0000-0001-8918-0711 ; 0000-0002-9872-954X ; 0000-0003-3672-2921 ; 0000-0001-5257-0740 ; 0000-0003-3584-3609 ; 0000-0002-0228-169X ; 0000-0001-7179-1733 ; 0000000271969754 ; 000000020228169X ; 000000029872954X ; 0000000171791733 ; 0000000152570740 ; 0000000308062911 ; 0000000255120443 ; 0000000335843609 ; 0000000189180711 ; 0000000336722921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-019-0575-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-019-0575-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31932677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02392124$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1800730$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Flood, Pádraic J.</creatorcontrib><creatorcontrib>Theeuwen, Tom P. J. M.</creatorcontrib><creatorcontrib>Schneeberger, Korbinian</creatorcontrib><creatorcontrib>Keizer, Paul</creatorcontrib><creatorcontrib>Kruijer, Willem</creatorcontrib><creatorcontrib>Severing, Edouard</creatorcontrib><creatorcontrib>Kouklas, Evangelos</creatorcontrib><creatorcontrib>Hageman, Jos A.</creatorcontrib><creatorcontrib>Wijfjes, Raúl</creatorcontrib><creatorcontrib>Calvo-Baltanas, Vanesa</creatorcontrib><creatorcontrib>Becker, Frank F. M.</creatorcontrib><creatorcontrib>Schnabel, Sabine K.</creatorcontrib><creatorcontrib>Willems, Leo A. J.</creatorcontrib><creatorcontrib>Ligterink, Wilco</creatorcontrib><creatorcontrib>van Arkel, Jeroen</creatorcontrib><creatorcontrib>Mumm, Roland</creatorcontrib><creatorcontrib>Gualberto, José M.</creatorcontrib><creatorcontrib>Savage, Linda</creatorcontrib><creatorcontrib>Kramer, David M.</creatorcontrib><creatorcontrib>Keurentjes, Joost J. B.</creatorcontrib><creatorcontrib>van Eeuwijk, Fred</creatorcontrib><creatorcontrib>Koornneef, Maarten</creatorcontrib><creatorcontrib>Harbinson, Jeremy</creatorcontrib><creatorcontrib>Aarts, Mark G. M.</creatorcontrib><creatorcontrib>Wijnker, Erik</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Reciprocal cybrids reveal how organellar genomes affect plant phenotypes</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype–nucleotype combinations (cybrids)
1
. We generated a panel comprising all possible cybrids of seven
Arabidopsis thaliana
accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype–plasmotype–environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype–plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.
Plants store the vast majority of their DNA in the nucleus, like all other eukaryotes, but also possess two sets of organellar genomes in mitochondria and plastids. Now, researchers have employed haploid inducers to generate reciprocal cybrids to disentangle the specific contributions of organellar variations to plant performance.</description><subject>45/47</subject><subject>631/208/480</subject><subject>631/208/711</subject><subject>631/449/1734/2687</subject><subject>631/449/1870</subject><subject>631/449/2686</subject><subject>Arabidopsis - genetics</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomedical and Life Sciences</subject><subject>Chloroplast DNA</subject><subject>Chloroplasts</subject><subject>Cybrids</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Environmental conditions</subject><subject>Epistasis</subject><subject>Eukaryotes</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Hybridization, Genetic</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Organelles - genetics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Plant Sciences</subject><subject>Plastids</subject><subject>Vegetal Biology</subject><issn>2055-0278</issn><issn>2055-026X</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1LxDAQhoMoKuoP8CJFL3qoziRN0xxF1BUWBNFzSNN0t9Jt1qS7sv_elPqF4CXJTJ55M5OXkGOESwRWXIUMMyFSQJkCFzyVW2SfAucpUFFs_zrvkaMQXgEABecsh12yx1AymguxTyZP1jRL74xuE7MpfVOFxNu1jeHcvSfOz3Rn21b7ZGY7t7Ah0XVtTZ8sW93FdR6z_WZpwyHZqXUb7NHnfkBe7m6fbybp9PH-4eZ6mppM5H3KWVbT3Aota2CGCWBlzvOy0IAVQmkEzyUWJfISqanQyCqvUWco48jIsGAH5HTUdaFvVDBNb83cuK6LTSksAASDCF2M0Fy3aumbhfYb5XSjJtdTNeSAMkmRZmsa2fORjb_wtrKhV4smmGHmzrpVUJSxAgohESN69gd9dSvfxXEjlTHKELNBEEfKeBeCt_V3BwhqsE6N1qlonRqsUzLWnHwqr8qFrb4rvoyKAB2BEK-6mfU_T_-v-gEIq6A7</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Flood, Pádraic J.</creator><creator>Theeuwen, Tom P. J. M.</creator><creator>Schneeberger, Korbinian</creator><creator>Keizer, Paul</creator><creator>Kruijer, Willem</creator><creator>Severing, Edouard</creator><creator>Kouklas, Evangelos</creator><creator>Hageman, Jos A.</creator><creator>Wijfjes, Raúl</creator><creator>Calvo-Baltanas, Vanesa</creator><creator>Becker, Frank F. M.</creator><creator>Schnabel, Sabine K.</creator><creator>Willems, Leo A. J.</creator><creator>Ligterink, Wilco</creator><creator>van Arkel, Jeroen</creator><creator>Mumm, Roland</creator><creator>Gualberto, José M.</creator><creator>Savage, Linda</creator><creator>Kramer, David M.</creator><creator>Keurentjes, Joost J. B.</creator><creator>van Eeuwijk, Fred</creator><creator>Koornneef, Maarten</creator><creator>Harbinson, Jeremy</creator><creator>Aarts, Mark G. M.</creator><creator>Wijnker, Erik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5512-0443</orcidid><orcidid>https://orcid.org/0000-0003-0806-2911</orcidid><orcidid>https://orcid.org/0000-0002-7196-9754</orcidid><orcidid>https://orcid.org/0000-0001-8918-0711</orcidid><orcidid>https://orcid.org/0000-0002-9872-954X</orcidid><orcidid>https://orcid.org/0000-0003-3672-2921</orcidid><orcidid>https://orcid.org/0000-0001-5257-0740</orcidid><orcidid>https://orcid.org/0000-0003-3584-3609</orcidid><orcidid>https://orcid.org/0000-0002-0228-169X</orcidid><orcidid>https://orcid.org/0000-0001-7179-1733</orcidid><orcidid>https://orcid.org/0000000271969754</orcidid><orcidid>https://orcid.org/000000020228169X</orcidid><orcidid>https://orcid.org/000000029872954X</orcidid><orcidid>https://orcid.org/0000000171791733</orcidid><orcidid>https://orcid.org/0000000152570740</orcidid><orcidid>https://orcid.org/0000000308062911</orcidid><orcidid>https://orcid.org/0000000255120443</orcidid><orcidid>https://orcid.org/0000000335843609</orcidid><orcidid>https://orcid.org/0000000189180711</orcidid><orcidid>https://orcid.org/0000000336722921</orcidid></search><sort><creationdate>20200101</creationdate><title>Reciprocal cybrids reveal how organellar genomes affect plant phenotypes</title><author>Flood, Pádraic J. ; Theeuwen, Tom P. J. M. ; Schneeberger, Korbinian ; Keizer, Paul ; Kruijer, Willem ; Severing, Edouard ; Kouklas, Evangelos ; Hageman, Jos A. ; Wijfjes, Raúl ; Calvo-Baltanas, Vanesa ; Becker, Frank F. M. ; Schnabel, Sabine K. ; Willems, Leo A. J. ; Ligterink, Wilco ; van Arkel, Jeroen ; Mumm, Roland ; Gualberto, José M. ; Savage, Linda ; Kramer, David M. ; Keurentjes, Joost J. B. ; van Eeuwijk, Fred ; Koornneef, Maarten ; Harbinson, Jeremy ; Aarts, Mark G. M. ; Wijnker, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-534f26e7a9f03c3703b656b8a01d10bc756918b15b12cd1c9d6f1a41903813183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45/47</topic><topic>631/208/480</topic><topic>631/208/711</topic><topic>631/449/1734/2687</topic><topic>631/449/1870</topic><topic>631/449/2686</topic><topic>Arabidopsis - genetics</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomedical and Life Sciences</topic><topic>Chloroplast DNA</topic><topic>Chloroplasts</topic><topic>Cybrids</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Environmental conditions</topic><topic>Epistasis</topic><topic>Eukaryotes</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Hybridization, Genetic</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Organelles - genetics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Plant Sciences</topic><topic>Plastids</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flood, Pádraic J.</creatorcontrib><creatorcontrib>Theeuwen, Tom P. J. M.</creatorcontrib><creatorcontrib>Schneeberger, Korbinian</creatorcontrib><creatorcontrib>Keizer, Paul</creatorcontrib><creatorcontrib>Kruijer, Willem</creatorcontrib><creatorcontrib>Severing, Edouard</creatorcontrib><creatorcontrib>Kouklas, Evangelos</creatorcontrib><creatorcontrib>Hageman, Jos A.</creatorcontrib><creatorcontrib>Wijfjes, Raúl</creatorcontrib><creatorcontrib>Calvo-Baltanas, Vanesa</creatorcontrib><creatorcontrib>Becker, Frank F. M.</creatorcontrib><creatorcontrib>Schnabel, Sabine K.</creatorcontrib><creatorcontrib>Willems, Leo A. J.</creatorcontrib><creatorcontrib>Ligterink, Wilco</creatorcontrib><creatorcontrib>van Arkel, Jeroen</creatorcontrib><creatorcontrib>Mumm, Roland</creatorcontrib><creatorcontrib>Gualberto, José M.</creatorcontrib><creatorcontrib>Savage, Linda</creatorcontrib><creatorcontrib>Kramer, David M.</creatorcontrib><creatorcontrib>Keurentjes, Joost J. B.</creatorcontrib><creatorcontrib>van Eeuwijk, Fred</creatorcontrib><creatorcontrib>Koornneef, Maarten</creatorcontrib><creatorcontrib>Harbinson, Jeremy</creatorcontrib><creatorcontrib>Aarts, Mark G. M.</creatorcontrib><creatorcontrib>Wijnker, Erik</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flood, Pádraic J.</au><au>Theeuwen, Tom P. J. M.</au><au>Schneeberger, Korbinian</au><au>Keizer, Paul</au><au>Kruijer, Willem</au><au>Severing, Edouard</au><au>Kouklas, Evangelos</au><au>Hageman, Jos A.</au><au>Wijfjes, Raúl</au><au>Calvo-Baltanas, Vanesa</au><au>Becker, Frank F. M.</au><au>Schnabel, Sabine K.</au><au>Willems, Leo A. J.</au><au>Ligterink, Wilco</au><au>van Arkel, Jeroen</au><au>Mumm, Roland</au><au>Gualberto, José M.</au><au>Savage, Linda</au><au>Kramer, David M.</au><au>Keurentjes, Joost J. B.</au><au>van Eeuwijk, Fred</au><au>Koornneef, Maarten</au><au>Harbinson, Jeremy</au><au>Aarts, Mark G. M.</au><au>Wijnker, Erik</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reciprocal cybrids reveal how organellar genomes affect plant phenotypes</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>13</spage><epage>21</epage><pages>13-21</pages><issn>2055-0278</issn><issn>2055-026X</issn><eissn>2055-0278</eissn><abstract>Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype–nucleotype combinations (cybrids)
1
. We generated a panel comprising all possible cybrids of seven
Arabidopsis thaliana
accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype–plasmotype–environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype–plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.
Plants store the vast majority of their DNA in the nucleus, like all other eukaryotes, but also possess two sets of organellar genomes in mitochondria and plastids. Now, researchers have employed haploid inducers to generate reciprocal cybrids to disentangle the specific contributions of organellar variations to plant performance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31932677</pmid><doi>10.1038/s41477-019-0575-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5512-0443</orcidid><orcidid>https://orcid.org/0000-0003-0806-2911</orcidid><orcidid>https://orcid.org/0000-0002-7196-9754</orcidid><orcidid>https://orcid.org/0000-0001-8918-0711</orcidid><orcidid>https://orcid.org/0000-0002-9872-954X</orcidid><orcidid>https://orcid.org/0000-0003-3672-2921</orcidid><orcidid>https://orcid.org/0000-0001-5257-0740</orcidid><orcidid>https://orcid.org/0000-0003-3584-3609</orcidid><orcidid>https://orcid.org/0000-0002-0228-169X</orcidid><orcidid>https://orcid.org/0000-0001-7179-1733</orcidid><orcidid>https://orcid.org/0000000271969754</orcidid><orcidid>https://orcid.org/000000020228169X</orcidid><orcidid>https://orcid.org/000000029872954X</orcidid><orcidid>https://orcid.org/0000000171791733</orcidid><orcidid>https://orcid.org/0000000152570740</orcidid><orcidid>https://orcid.org/0000000308062911</orcidid><orcidid>https://orcid.org/0000000255120443</orcidid><orcidid>https://orcid.org/0000000335843609</orcidid><orcidid>https://orcid.org/0000000189180711</orcidid><orcidid>https://orcid.org/0000000336722921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-0278 |
ispartof | Nature plants, 2020-01, Vol.6 (1), p.13-21 |
issn | 2055-0278 2055-026X 2055-0278 |
language | eng |
recordid | cdi_osti_scitechconnect_1800730 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 45/47 631/208/480 631/208/711 631/449/1734/2687 631/449/1870 631/449/2686 Arabidopsis - genetics BASIC BIOLOGICAL SCIENCES Biomedical and Life Sciences Chloroplast DNA Chloroplasts Cybrids Deoxyribonucleic acid DNA Environmental conditions Epistasis Eukaryotes Genome, Plant Genomes Hybridization, Genetic Letter Life Sciences Mitochondria Mitochondrial DNA Organelles - genetics Phenotype Phenotypes Phenotypic variations Plant Sciences Plastids Vegetal Biology |
title | Reciprocal cybrids reveal how organellar genomes affect plant phenotypes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reciprocal%20cybrids%20reveal%20how%20organellar%20genomes%20affect%20plant%20phenotypes&rft.jtitle=Nature%20plants&rft.au=Flood,%20P%C3%A1draic%20J.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2020-01-01&rft.volume=6&rft.issue=1&rft.spage=13&rft.epage=21&rft.pages=13-21&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-019-0575-9&rft_dat=%3Cproquest_osti_%3E2343231142%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343231142&rft_id=info:pmid/31932677&rfr_iscdi=true |