Reciprocal cybrids reveal how organellar genomes affect plant phenotypes

Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmoty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2020-01, Vol.6 (1), p.13-21
Hauptverfasser: Flood, Pádraic J., Theeuwen, Tom P. J. M., Schneeberger, Korbinian, Keizer, Paul, Kruijer, Willem, Severing, Edouard, Kouklas, Evangelos, Hageman, Jos A., Wijfjes, Raúl, Calvo-Baltanas, Vanesa, Becker, Frank F. M., Schnabel, Sabine K., Willems, Leo A. J., Ligterink, Wilco, van Arkel, Jeroen, Mumm, Roland, Gualberto, José M., Savage, Linda, Kramer, David M., Keurentjes, Joost J. B., van Eeuwijk, Fred, Koornneef, Maarten, Harbinson, Jeremy, Aarts, Mark G. M., Wijnker, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 13
container_title Nature plants
container_volume 6
creator Flood, Pádraic J.
Theeuwen, Tom P. J. M.
Schneeberger, Korbinian
Keizer, Paul
Kruijer, Willem
Severing, Edouard
Kouklas, Evangelos
Hageman, Jos A.
Wijfjes, Raúl
Calvo-Baltanas, Vanesa
Becker, Frank F. M.
Schnabel, Sabine K.
Willems, Leo A. J.
Ligterink, Wilco
van Arkel, Jeroen
Mumm, Roland
Gualberto, José M.
Savage, Linda
Kramer, David M.
Keurentjes, Joost J. B.
van Eeuwijk, Fred
Koornneef, Maarten
Harbinson, Jeremy
Aarts, Mark G. M.
Wijnker, Erik
description Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype–nucleotype combinations (cybrids) 1 . We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype–plasmotype–environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype–plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance. Plants store the vast majority of their DNA in the nucleus, like all other eukaryotes, but also possess two sets of organellar genomes in mitochondria and plastids. Now, researchers have employed haploid inducers to generate reciprocal cybrids to disentangle the specific contributions of organellar variations to plant performance.
doi_str_mv 10.1038/s41477-019-0575-9
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1800730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343231142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-534f26e7a9f03c3703b656b8a01d10bc756918b15b12cd1c9d6f1a41903813183</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMoKuoP8CJFL3qoziRN0xxF1BUWBNFzSNN0t9Jt1qS7sv_elPqF4CXJTJ55M5OXkGOESwRWXIUMMyFSQJkCFzyVW2SfAucpUFFs_zrvkaMQXgEABecsh12yx1AymguxTyZP1jRL74xuE7MpfVOFxNu1jeHcvSfOz3Rn21b7ZGY7t7Ah0XVtTZ8sW93FdR6z_WZpwyHZqXUb7NHnfkBe7m6fbybp9PH-4eZ6mppM5H3KWVbT3Aota2CGCWBlzvOy0IAVQmkEzyUWJfISqanQyCqvUWco48jIsGAH5HTUdaFvVDBNb83cuK6LTSksAASDCF2M0Fy3aumbhfYb5XSjJtdTNeSAMkmRZmsa2fORjb_wtrKhV4smmGHmzrpVUJSxAgohESN69gd9dSvfxXEjlTHKELNBEEfKeBeCt_V3BwhqsE6N1qlonRqsUzLWnHwqr8qFrb4rvoyKAB2BEK-6mfU_T_-v-gEIq6A7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343231142</pqid></control><display><type>article</type><title>Reciprocal cybrids reveal how organellar genomes affect plant phenotypes</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Flood, Pádraic J. ; Theeuwen, Tom P. J. M. ; Schneeberger, Korbinian ; Keizer, Paul ; Kruijer, Willem ; Severing, Edouard ; Kouklas, Evangelos ; Hageman, Jos A. ; Wijfjes, Raúl ; Calvo-Baltanas, Vanesa ; Becker, Frank F. M. ; Schnabel, Sabine K. ; Willems, Leo A. J. ; Ligterink, Wilco ; van Arkel, Jeroen ; Mumm, Roland ; Gualberto, José M. ; Savage, Linda ; Kramer, David M. ; Keurentjes, Joost J. B. ; van Eeuwijk, Fred ; Koornneef, Maarten ; Harbinson, Jeremy ; Aarts, Mark G. M. ; Wijnker, Erik</creator><creatorcontrib>Flood, Pádraic J. ; Theeuwen, Tom P. J. M. ; Schneeberger, Korbinian ; Keizer, Paul ; Kruijer, Willem ; Severing, Edouard ; Kouklas, Evangelos ; Hageman, Jos A. ; Wijfjes, Raúl ; Calvo-Baltanas, Vanesa ; Becker, Frank F. M. ; Schnabel, Sabine K. ; Willems, Leo A. J. ; Ligterink, Wilco ; van Arkel, Jeroen ; Mumm, Roland ; Gualberto, José M. ; Savage, Linda ; Kramer, David M. ; Keurentjes, Joost J. B. ; van Eeuwijk, Fred ; Koornneef, Maarten ; Harbinson, Jeremy ; Aarts, Mark G. M. ; Wijnker, Erik ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype–nucleotype combinations (cybrids) 1 . We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype–plasmotype–environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype–plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance. Plants store the vast majority of their DNA in the nucleus, like all other eukaryotes, but also possess two sets of organellar genomes in mitochondria and plastids. Now, researchers have employed haploid inducers to generate reciprocal cybrids to disentangle the specific contributions of organellar variations to plant performance.</description><identifier>ISSN: 2055-0278</identifier><identifier>ISSN: 2055-026X</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-019-0575-9</identifier><identifier>PMID: 31932677</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/47 ; 631/208/480 ; 631/208/711 ; 631/449/1734/2687 ; 631/449/1870 ; 631/449/2686 ; Arabidopsis - genetics ; BASIC BIOLOGICAL SCIENCES ; Biomedical and Life Sciences ; Chloroplast DNA ; Chloroplasts ; Cybrids ; Deoxyribonucleic acid ; DNA ; Environmental conditions ; Epistasis ; Eukaryotes ; Genome, Plant ; Genomes ; Hybridization, Genetic ; Letter ; Life Sciences ; Mitochondria ; Mitochondrial DNA ; Organelles - genetics ; Phenotype ; Phenotypes ; Phenotypic variations ; Plant Sciences ; Plastids ; Vegetal Biology</subject><ispartof>Nature plants, 2020-01, Vol.6 (1), p.13-21</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-534f26e7a9f03c3703b656b8a01d10bc756918b15b12cd1c9d6f1a41903813183</citedby><cites>FETCH-LOGICAL-c476t-534f26e7a9f03c3703b656b8a01d10bc756918b15b12cd1c9d6f1a41903813183</cites><orcidid>0000-0002-5512-0443 ; 0000-0003-0806-2911 ; 0000-0002-7196-9754 ; 0000-0001-8918-0711 ; 0000-0002-9872-954X ; 0000-0003-3672-2921 ; 0000-0001-5257-0740 ; 0000-0003-3584-3609 ; 0000-0002-0228-169X ; 0000-0001-7179-1733 ; 0000000271969754 ; 000000020228169X ; 000000029872954X ; 0000000171791733 ; 0000000152570740 ; 0000000308062911 ; 0000000255120443 ; 0000000335843609 ; 0000000189180711 ; 0000000336722921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-019-0575-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-019-0575-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31932677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02392124$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1800730$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Flood, Pádraic J.</creatorcontrib><creatorcontrib>Theeuwen, Tom P. J. M.</creatorcontrib><creatorcontrib>Schneeberger, Korbinian</creatorcontrib><creatorcontrib>Keizer, Paul</creatorcontrib><creatorcontrib>Kruijer, Willem</creatorcontrib><creatorcontrib>Severing, Edouard</creatorcontrib><creatorcontrib>Kouklas, Evangelos</creatorcontrib><creatorcontrib>Hageman, Jos A.</creatorcontrib><creatorcontrib>Wijfjes, Raúl</creatorcontrib><creatorcontrib>Calvo-Baltanas, Vanesa</creatorcontrib><creatorcontrib>Becker, Frank F. M.</creatorcontrib><creatorcontrib>Schnabel, Sabine K.</creatorcontrib><creatorcontrib>Willems, Leo A. J.</creatorcontrib><creatorcontrib>Ligterink, Wilco</creatorcontrib><creatorcontrib>van Arkel, Jeroen</creatorcontrib><creatorcontrib>Mumm, Roland</creatorcontrib><creatorcontrib>Gualberto, José M.</creatorcontrib><creatorcontrib>Savage, Linda</creatorcontrib><creatorcontrib>Kramer, David M.</creatorcontrib><creatorcontrib>Keurentjes, Joost J. B.</creatorcontrib><creatorcontrib>van Eeuwijk, Fred</creatorcontrib><creatorcontrib>Koornneef, Maarten</creatorcontrib><creatorcontrib>Harbinson, Jeremy</creatorcontrib><creatorcontrib>Aarts, Mark G. M.</creatorcontrib><creatorcontrib>Wijnker, Erik</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Reciprocal cybrids reveal how organellar genomes affect plant phenotypes</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype–nucleotype combinations (cybrids) 1 . We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype–plasmotype–environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype–plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance. Plants store the vast majority of their DNA in the nucleus, like all other eukaryotes, but also possess two sets of organellar genomes in mitochondria and plastids. Now, researchers have employed haploid inducers to generate reciprocal cybrids to disentangle the specific contributions of organellar variations to plant performance.</description><subject>45/47</subject><subject>631/208/480</subject><subject>631/208/711</subject><subject>631/449/1734/2687</subject><subject>631/449/1870</subject><subject>631/449/2686</subject><subject>Arabidopsis - genetics</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomedical and Life Sciences</subject><subject>Chloroplast DNA</subject><subject>Chloroplasts</subject><subject>Cybrids</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Environmental conditions</subject><subject>Epistasis</subject><subject>Eukaryotes</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Hybridization, Genetic</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Organelles - genetics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Plant Sciences</subject><subject>Plastids</subject><subject>Vegetal Biology</subject><issn>2055-0278</issn><issn>2055-026X</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1LxDAQhoMoKuoP8CJFL3qoziRN0xxF1BUWBNFzSNN0t9Jt1qS7sv_elPqF4CXJTJ55M5OXkGOESwRWXIUMMyFSQJkCFzyVW2SfAucpUFFs_zrvkaMQXgEABecsh12yx1AymguxTyZP1jRL74xuE7MpfVOFxNu1jeHcvSfOz3Rn21b7ZGY7t7Ah0XVtTZ8sW93FdR6z_WZpwyHZqXUb7NHnfkBe7m6fbybp9PH-4eZ6mppM5H3KWVbT3Aota2CGCWBlzvOy0IAVQmkEzyUWJfISqanQyCqvUWco48jIsGAH5HTUdaFvVDBNb83cuK6LTSksAASDCF2M0Fy3aumbhfYb5XSjJtdTNeSAMkmRZmsa2fORjb_wtrKhV4smmGHmzrpVUJSxAgohESN69gd9dSvfxXEjlTHKELNBEEfKeBeCt_V3BwhqsE6N1qlonRqsUzLWnHwqr8qFrb4rvoyKAB2BEK-6mfU_T_-v-gEIq6A7</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Flood, Pádraic J.</creator><creator>Theeuwen, Tom P. J. M.</creator><creator>Schneeberger, Korbinian</creator><creator>Keizer, Paul</creator><creator>Kruijer, Willem</creator><creator>Severing, Edouard</creator><creator>Kouklas, Evangelos</creator><creator>Hageman, Jos A.</creator><creator>Wijfjes, Raúl</creator><creator>Calvo-Baltanas, Vanesa</creator><creator>Becker, Frank F. M.</creator><creator>Schnabel, Sabine K.</creator><creator>Willems, Leo A. J.</creator><creator>Ligterink, Wilco</creator><creator>van Arkel, Jeroen</creator><creator>Mumm, Roland</creator><creator>Gualberto, José M.</creator><creator>Savage, Linda</creator><creator>Kramer, David M.</creator><creator>Keurentjes, Joost J. B.</creator><creator>van Eeuwijk, Fred</creator><creator>Koornneef, Maarten</creator><creator>Harbinson, Jeremy</creator><creator>Aarts, Mark G. M.</creator><creator>Wijnker, Erik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5512-0443</orcidid><orcidid>https://orcid.org/0000-0003-0806-2911</orcidid><orcidid>https://orcid.org/0000-0002-7196-9754</orcidid><orcidid>https://orcid.org/0000-0001-8918-0711</orcidid><orcidid>https://orcid.org/0000-0002-9872-954X</orcidid><orcidid>https://orcid.org/0000-0003-3672-2921</orcidid><orcidid>https://orcid.org/0000-0001-5257-0740</orcidid><orcidid>https://orcid.org/0000-0003-3584-3609</orcidid><orcidid>https://orcid.org/0000-0002-0228-169X</orcidid><orcidid>https://orcid.org/0000-0001-7179-1733</orcidid><orcidid>https://orcid.org/0000000271969754</orcidid><orcidid>https://orcid.org/000000020228169X</orcidid><orcidid>https://orcid.org/000000029872954X</orcidid><orcidid>https://orcid.org/0000000171791733</orcidid><orcidid>https://orcid.org/0000000152570740</orcidid><orcidid>https://orcid.org/0000000308062911</orcidid><orcidid>https://orcid.org/0000000255120443</orcidid><orcidid>https://orcid.org/0000000335843609</orcidid><orcidid>https://orcid.org/0000000189180711</orcidid><orcidid>https://orcid.org/0000000336722921</orcidid></search><sort><creationdate>20200101</creationdate><title>Reciprocal cybrids reveal how organellar genomes affect plant phenotypes</title><author>Flood, Pádraic J. ; Theeuwen, Tom P. J. M. ; Schneeberger, Korbinian ; Keizer, Paul ; Kruijer, Willem ; Severing, Edouard ; Kouklas, Evangelos ; Hageman, Jos A. ; Wijfjes, Raúl ; Calvo-Baltanas, Vanesa ; Becker, Frank F. M. ; Schnabel, Sabine K. ; Willems, Leo A. J. ; Ligterink, Wilco ; van Arkel, Jeroen ; Mumm, Roland ; Gualberto, José M. ; Savage, Linda ; Kramer, David M. ; Keurentjes, Joost J. B. ; van Eeuwijk, Fred ; Koornneef, Maarten ; Harbinson, Jeremy ; Aarts, Mark G. M. ; Wijnker, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-534f26e7a9f03c3703b656b8a01d10bc756918b15b12cd1c9d6f1a41903813183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45/47</topic><topic>631/208/480</topic><topic>631/208/711</topic><topic>631/449/1734/2687</topic><topic>631/449/1870</topic><topic>631/449/2686</topic><topic>Arabidopsis - genetics</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomedical and Life Sciences</topic><topic>Chloroplast DNA</topic><topic>Chloroplasts</topic><topic>Cybrids</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Environmental conditions</topic><topic>Epistasis</topic><topic>Eukaryotes</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Hybridization, Genetic</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Organelles - genetics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Plant Sciences</topic><topic>Plastids</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flood, Pádraic J.</creatorcontrib><creatorcontrib>Theeuwen, Tom P. J. M.</creatorcontrib><creatorcontrib>Schneeberger, Korbinian</creatorcontrib><creatorcontrib>Keizer, Paul</creatorcontrib><creatorcontrib>Kruijer, Willem</creatorcontrib><creatorcontrib>Severing, Edouard</creatorcontrib><creatorcontrib>Kouklas, Evangelos</creatorcontrib><creatorcontrib>Hageman, Jos A.</creatorcontrib><creatorcontrib>Wijfjes, Raúl</creatorcontrib><creatorcontrib>Calvo-Baltanas, Vanesa</creatorcontrib><creatorcontrib>Becker, Frank F. M.</creatorcontrib><creatorcontrib>Schnabel, Sabine K.</creatorcontrib><creatorcontrib>Willems, Leo A. J.</creatorcontrib><creatorcontrib>Ligterink, Wilco</creatorcontrib><creatorcontrib>van Arkel, Jeroen</creatorcontrib><creatorcontrib>Mumm, Roland</creatorcontrib><creatorcontrib>Gualberto, José M.</creatorcontrib><creatorcontrib>Savage, Linda</creatorcontrib><creatorcontrib>Kramer, David M.</creatorcontrib><creatorcontrib>Keurentjes, Joost J. B.</creatorcontrib><creatorcontrib>van Eeuwijk, Fred</creatorcontrib><creatorcontrib>Koornneef, Maarten</creatorcontrib><creatorcontrib>Harbinson, Jeremy</creatorcontrib><creatorcontrib>Aarts, Mark G. M.</creatorcontrib><creatorcontrib>Wijnker, Erik</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flood, Pádraic J.</au><au>Theeuwen, Tom P. J. M.</au><au>Schneeberger, Korbinian</au><au>Keizer, Paul</au><au>Kruijer, Willem</au><au>Severing, Edouard</au><au>Kouklas, Evangelos</au><au>Hageman, Jos A.</au><au>Wijfjes, Raúl</au><au>Calvo-Baltanas, Vanesa</au><au>Becker, Frank F. M.</au><au>Schnabel, Sabine K.</au><au>Willems, Leo A. J.</au><au>Ligterink, Wilco</au><au>van Arkel, Jeroen</au><au>Mumm, Roland</au><au>Gualberto, José M.</au><au>Savage, Linda</au><au>Kramer, David M.</au><au>Keurentjes, Joost J. B.</au><au>van Eeuwijk, Fred</au><au>Koornneef, Maarten</au><au>Harbinson, Jeremy</au><au>Aarts, Mark G. M.</au><au>Wijnker, Erik</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reciprocal cybrids reveal how organellar genomes affect plant phenotypes</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>13</spage><epage>21</epage><pages>13-21</pages><issn>2055-0278</issn><issn>2055-026X</issn><eissn>2055-0278</eissn><abstract>Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype–nucleotype combinations (cybrids) 1 . We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype–plasmotype–environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype–plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance. Plants store the vast majority of their DNA in the nucleus, like all other eukaryotes, but also possess two sets of organellar genomes in mitochondria and plastids. Now, researchers have employed haploid inducers to generate reciprocal cybrids to disentangle the specific contributions of organellar variations to plant performance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31932677</pmid><doi>10.1038/s41477-019-0575-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5512-0443</orcidid><orcidid>https://orcid.org/0000-0003-0806-2911</orcidid><orcidid>https://orcid.org/0000-0002-7196-9754</orcidid><orcidid>https://orcid.org/0000-0001-8918-0711</orcidid><orcidid>https://orcid.org/0000-0002-9872-954X</orcidid><orcidid>https://orcid.org/0000-0003-3672-2921</orcidid><orcidid>https://orcid.org/0000-0001-5257-0740</orcidid><orcidid>https://orcid.org/0000-0003-3584-3609</orcidid><orcidid>https://orcid.org/0000-0002-0228-169X</orcidid><orcidid>https://orcid.org/0000-0001-7179-1733</orcidid><orcidid>https://orcid.org/0000000271969754</orcidid><orcidid>https://orcid.org/000000020228169X</orcidid><orcidid>https://orcid.org/000000029872954X</orcidid><orcidid>https://orcid.org/0000000171791733</orcidid><orcidid>https://orcid.org/0000000152570740</orcidid><orcidid>https://orcid.org/0000000308062911</orcidid><orcidid>https://orcid.org/0000000255120443</orcidid><orcidid>https://orcid.org/0000000335843609</orcidid><orcidid>https://orcid.org/0000000189180711</orcidid><orcidid>https://orcid.org/0000000336722921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-0278
ispartof Nature plants, 2020-01, Vol.6 (1), p.13-21
issn 2055-0278
2055-026X
2055-0278
language eng
recordid cdi_osti_scitechconnect_1800730
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 45/47
631/208/480
631/208/711
631/449/1734/2687
631/449/1870
631/449/2686
Arabidopsis - genetics
BASIC BIOLOGICAL SCIENCES
Biomedical and Life Sciences
Chloroplast DNA
Chloroplasts
Cybrids
Deoxyribonucleic acid
DNA
Environmental conditions
Epistasis
Eukaryotes
Genome, Plant
Genomes
Hybridization, Genetic
Letter
Life Sciences
Mitochondria
Mitochondrial DNA
Organelles - genetics
Phenotype
Phenotypes
Phenotypic variations
Plant Sciences
Plastids
Vegetal Biology
title Reciprocal cybrids reveal how organellar genomes affect plant phenotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reciprocal%20cybrids%20reveal%20how%20organellar%20genomes%20affect%20plant%20phenotypes&rft.jtitle=Nature%20plants&rft.au=Flood,%20P%C3%A1draic%20J.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2020-01-01&rft.volume=6&rft.issue=1&rft.spage=13&rft.epage=21&rft.pages=13-21&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-019-0575-9&rft_dat=%3Cproquest_osti_%3E2343231142%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343231142&rft_id=info:pmid/31932677&rfr_iscdi=true