Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation

Krypton and xenon are important gases in many applications, including, but not limited to, electronics, lighting, and medicine. Separation of these two gases by cryogenic distillation is highly energy-intensive; however, adsorption-based separation processes provide an alternative strategy for isola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2020-05, Vol.32 (9), p.3776-3782
Hauptverfasser: Idrees, Karam B, Chen, Zhijie, Zhang, Xuan, Mian, Mohammad Rasel, Drout, Riki J, Islamoglu, Timur, Farha, Omar K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3782
container_issue 9
container_start_page 3776
container_title Chemistry of materials
container_volume 32
creator Idrees, Karam B
Chen, Zhijie
Zhang, Xuan
Mian, Mohammad Rasel
Drout, Riki J
Islamoglu, Timur
Farha, Omar K
description Krypton and xenon are important gases in many applications, including, but not limited to, electronics, lighting, and medicine. Separation of these two gases by cryogenic distillation is highly energy-intensive; however, adsorption-based separation processes provide an alternative strategy for isolating gases in high purity. The absence of strong interactions between these molecules and porous adsorbents has impeded the advancement of adsorptive separation of krypton and xenon. Herein, we capitalized on the modular nature of metal–organic frameworks (MOFs) to design a porous material which relies on gas confinement to separate krypton/xenon (Kr/Xe) mixtures. We solvothermally synthesized a new zirconium-based MOF, NU-403, which comprises a three-dimensional linker, bicyclo[2.2.2]­octane-1,4-dicarboxylic acid. Comprehensive gas adsorption measurements revealed that the linker dimensionality and MOF pore aperture dramatically affect the separation of xenon from krypton owing to the confinement of gas molecules inside the framework. Moreover, Kr/Xe selectivity increased significantly after postsynthetic defect healing, which further enhanced gas–framework interactions, demonstrating an effective strategy for enhancing krypton and xenon separation.
doi_str_mv 10.1021/acs.chemmater.9b05048
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1800553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b030514678</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-f41b6cf6cabd996e8f851faff7aafacf6dd886d5031368b65c714b1a424733</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEuXnCEgW-xS7iRN3WcqvABVRFohNNHFs6tLY1dgV6o47cENOgqsitqxmRvPeaN5HyAlnfc4G_AxU6KuZ7jqIGvvDhglWyB3S42LAMsHYYJf0mBxWWVGJcp8chDBnjCer7JH1M9iFR-ve6KNHTUdLjXGVGnAtnUZcqTTBgl5oo1UM1Dr6alF5Z1dddg5Bt_RBR1h8f35N8A2cVfQKodMfHt8DNR7pHa6X0buzF-28o1O9BIRovTsiewYWQR__1kPydHX5PL7J7ifXt-PRfQa5lDEzBW9KZUoFTTsclloaKbgBYyoAA2nRtlKWrWA5z0vZlEJVvGg4FIOiyvNDcro96kO0dVA2ajVL37sUpuaSMSE2IrEVKfQhoDb1Em0HuK45qzeE60S4_iNc_xJOPr71bdZzv0KXcvzj-QEf94fq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation</title><source>ACS Publications</source><creator>Idrees, Karam B ; Chen, Zhijie ; Zhang, Xuan ; Mian, Mohammad Rasel ; Drout, Riki J ; Islamoglu, Timur ; Farha, Omar K</creator><creatorcontrib>Idrees, Karam B ; Chen, Zhijie ; Zhang, Xuan ; Mian, Mohammad Rasel ; Drout, Riki J ; Islamoglu, Timur ; Farha, Omar K ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>Krypton and xenon are important gases in many applications, including, but not limited to, electronics, lighting, and medicine. Separation of these two gases by cryogenic distillation is highly energy-intensive; however, adsorption-based separation processes provide an alternative strategy for isolating gases in high purity. The absence of strong interactions between these molecules and porous adsorbents has impeded the advancement of adsorptive separation of krypton and xenon. Herein, we capitalized on the modular nature of metal–organic frameworks (MOFs) to design a porous material which relies on gas confinement to separate krypton/xenon (Kr/Xe) mixtures. We solvothermally synthesized a new zirconium-based MOF, NU-403, which comprises a three-dimensional linker, bicyclo[2.2.2]­octane-1,4-dicarboxylic acid. Comprehensive gas adsorption measurements revealed that the linker dimensionality and MOF pore aperture dramatically affect the separation of xenon from krypton owing to the confinement of gas molecules inside the framework. Moreover, Kr/Xe selectivity increased significantly after postsynthetic defect healing, which further enhanced gas–framework interactions, demonstrating an effective strategy for enhancing krypton and xenon separation.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b05048</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science</subject><ispartof>Chemistry of materials, 2020-05, Vol.32 (9), p.3776-3782</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-f41b6cf6cabd996e8f851faff7aafacf6dd886d5031368b65c714b1a424733</citedby><cites>FETCH-LOGICAL-a388t-f41b6cf6cabd996e8f851faff7aafacf6dd886d5031368b65c714b1a424733</cites><orcidid>0000-0002-9603-3952 ; 0000-0001-9232-7382 ; 0000-0001-8214-7265 ; 0000-0002-3511-7597 ; 0000-0003-3688-9158 ; 0000-0002-9904-9845 ; 0000000182147265 ; 0000000192327382 ; 0000000299049845 ; 0000000235117597 ; 0000000336889158 ; 0000000296033952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b05048$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b05048$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1800553$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Idrees, Karam B</creatorcontrib><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Mian, Mohammad Rasel</creatorcontrib><creatorcontrib>Drout, Riki J</creatorcontrib><creatorcontrib>Islamoglu, Timur</creatorcontrib><creatorcontrib>Farha, Omar K</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Krypton and xenon are important gases in many applications, including, but not limited to, electronics, lighting, and medicine. Separation of these two gases by cryogenic distillation is highly energy-intensive; however, adsorption-based separation processes provide an alternative strategy for isolating gases in high purity. The absence of strong interactions between these molecules and porous adsorbents has impeded the advancement of adsorptive separation of krypton and xenon. Herein, we capitalized on the modular nature of metal–organic frameworks (MOFs) to design a porous material which relies on gas confinement to separate krypton/xenon (Kr/Xe) mixtures. We solvothermally synthesized a new zirconium-based MOF, NU-403, which comprises a three-dimensional linker, bicyclo[2.2.2]­octane-1,4-dicarboxylic acid. Comprehensive gas adsorption measurements revealed that the linker dimensionality and MOF pore aperture dramatically affect the separation of xenon from krypton owing to the confinement of gas molecules inside the framework. Moreover, Kr/Xe selectivity increased significantly after postsynthetic defect healing, which further enhanced gas–framework interactions, demonstrating an effective strategy for enhancing krypton and xenon separation.</description><subject>Chemistry</subject><subject>Materials Science</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEuXnCEgW-xS7iRN3WcqvABVRFohNNHFs6tLY1dgV6o47cENOgqsitqxmRvPeaN5HyAlnfc4G_AxU6KuZ7jqIGvvDhglWyB3S42LAMsHYYJf0mBxWWVGJcp8chDBnjCer7JH1M9iFR-ve6KNHTUdLjXGVGnAtnUZcqTTBgl5oo1UM1Dr6alF5Z1dddg5Bt_RBR1h8f35N8A2cVfQKodMfHt8DNR7pHa6X0buzF-28o1O9BIRovTsiewYWQR__1kPydHX5PL7J7ifXt-PRfQa5lDEzBW9KZUoFTTsclloaKbgBYyoAA2nRtlKWrWA5z0vZlEJVvGg4FIOiyvNDcro96kO0dVA2ajVL37sUpuaSMSE2IrEVKfQhoDb1Em0HuK45qzeE60S4_iNc_xJOPr71bdZzv0KXcvzj-QEf94fq</recordid><startdate>20200512</startdate><enddate>20200512</enddate><creator>Idrees, Karam B</creator><creator>Chen, Zhijie</creator><creator>Zhang, Xuan</creator><creator>Mian, Mohammad Rasel</creator><creator>Drout, Riki J</creator><creator>Islamoglu, Timur</creator><creator>Farha, Omar K</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9603-3952</orcidid><orcidid>https://orcid.org/0000-0001-9232-7382</orcidid><orcidid>https://orcid.org/0000-0001-8214-7265</orcidid><orcidid>https://orcid.org/0000-0002-3511-7597</orcidid><orcidid>https://orcid.org/0000-0003-3688-9158</orcidid><orcidid>https://orcid.org/0000-0002-9904-9845</orcidid><orcidid>https://orcid.org/0000000182147265</orcidid><orcidid>https://orcid.org/0000000192327382</orcidid><orcidid>https://orcid.org/0000000299049845</orcidid><orcidid>https://orcid.org/0000000235117597</orcidid><orcidid>https://orcid.org/0000000336889158</orcidid><orcidid>https://orcid.org/0000000296033952</orcidid></search><sort><creationdate>20200512</creationdate><title>Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation</title><author>Idrees, Karam B ; Chen, Zhijie ; Zhang, Xuan ; Mian, Mohammad Rasel ; Drout, Riki J ; Islamoglu, Timur ; Farha, Omar K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-f41b6cf6cabd996e8f851faff7aafacf6dd886d5031368b65c714b1a424733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idrees, Karam B</creatorcontrib><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Mian, Mohammad Rasel</creatorcontrib><creatorcontrib>Drout, Riki J</creatorcontrib><creatorcontrib>Islamoglu, Timur</creatorcontrib><creatorcontrib>Farha, Omar K</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idrees, Karam B</au><au>Chen, Zhijie</au><au>Zhang, Xuan</au><au>Mian, Mohammad Rasel</au><au>Drout, Riki J</au><au>Islamoglu, Timur</au><au>Farha, Omar K</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2020-05-12</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><spage>3776</spage><epage>3782</epage><pages>3776-3782</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Krypton and xenon are important gases in many applications, including, but not limited to, electronics, lighting, and medicine. Separation of these two gases by cryogenic distillation is highly energy-intensive; however, adsorption-based separation processes provide an alternative strategy for isolating gases in high purity. The absence of strong interactions between these molecules and porous adsorbents has impeded the advancement of adsorptive separation of krypton and xenon. Herein, we capitalized on the modular nature of metal–organic frameworks (MOFs) to design a porous material which relies on gas confinement to separate krypton/xenon (Kr/Xe) mixtures. We solvothermally synthesized a new zirconium-based MOF, NU-403, which comprises a three-dimensional linker, bicyclo[2.2.2]­octane-1,4-dicarboxylic acid. Comprehensive gas adsorption measurements revealed that the linker dimensionality and MOF pore aperture dramatically affect the separation of xenon from krypton owing to the confinement of gas molecules inside the framework. Moreover, Kr/Xe selectivity increased significantly after postsynthetic defect healing, which further enhanced gas–framework interactions, demonstrating an effective strategy for enhancing krypton and xenon separation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b05048</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9603-3952</orcidid><orcidid>https://orcid.org/0000-0001-9232-7382</orcidid><orcidid>https://orcid.org/0000-0001-8214-7265</orcidid><orcidid>https://orcid.org/0000-0002-3511-7597</orcidid><orcidid>https://orcid.org/0000-0003-3688-9158</orcidid><orcidid>https://orcid.org/0000-0002-9904-9845</orcidid><orcidid>https://orcid.org/0000000182147265</orcidid><orcidid>https://orcid.org/0000000192327382</orcidid><orcidid>https://orcid.org/0000000299049845</orcidid><orcidid>https://orcid.org/0000000235117597</orcidid><orcidid>https://orcid.org/0000000336889158</orcidid><orcidid>https://orcid.org/0000000296033952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2020-05, Vol.32 (9), p.3776-3782
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1800553
source ACS Publications
subjects Chemistry
Materials Science
title Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Pore%20Aperture%20and%20Structural%20Defects%20in%20Zirconium-Based%20Metal%E2%80%93Organic%20Frameworks%20for%20Krypton/Xenon%20Separation&rft.jtitle=Chemistry%20of%20materials&rft.au=Idrees,%20Karam%20B&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2020-05-12&rft.volume=32&rft.issue=9&rft.spage=3776&rft.epage=3782&rft.pages=3776-3782&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b05048&rft_dat=%3Cacs_osti_%3Eb030514678%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true