Electronic correlations in nodal-line semimetals
Dirac fermions with highly dispersive linear bands 1 – 3 are usually considered weakly correlated due to the relatively large bandwidths ( W ) compared to Coulomb interactions ( U ). With the discovery of nodal-line semimetals, the notion of the Dirac point has been extended to lines and loops in mo...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-06, Vol.16 (6), p.636-641 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 6 |
container_start_page | 636 |
container_title | Nature physics |
container_volume | 16 |
creator | Shao, Yinming Rudenko, A. N. Hu, Jin Sun, Zhiyuan Zhu, Yanglin Moon, Seongphill Millis, A. J. Yuan, Shengjun Lichtenstein, A. I. Smirnov, Dmitry Mao, Z. Q. Katsnelson, M. I. Basov, D. N. |
description | Dirac fermions with highly dispersive linear bands
1
–
3
are usually considered weakly correlated due to the relatively large bandwidths (
W
) compared to Coulomb interactions (
U
). With the discovery of nodal-line semimetals, the notion of the Dirac point has been extended to lines and loops in momentum space. The anisotropy associated with nodal-line structure gives rise to greatly reduced kinetic energy along the line. However, experimental evidence for the anticipated enhanced correlations in nodal-line semimetals is sparse. Here, we report on prominent correlation effects in a nodal-line semimetal compound, ZrSiSe, through a combination of optical spectroscopy and density functional theory calculations. We observed two fundamental spectroscopic hallmarks of electronic correlations: strong reduction (1/3) of the free-carrier Drude weight and also the Fermi velocity compared to predictions of density functional band theory. The renormalization of Fermi velocity can be further controlled with an external magnetic field. ZrSiSe therefore offers the rare opportunity to investigate correlation-driven physics in a Dirac system.
What happens to topological materials when their electrons are strongly interacting is an open question. Shao and others demonstrate that ZrSiSe is a material that can address this as it has a topological band structure and non-trivial correlations. |
doi_str_mv | 10.1038/s41567-020-0859-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1800509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410658829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-77c9345d5bbd0539485619eb2053f1d5b2c6183aaececa36d1a739f99622e1a13</originalsourceid><addsrcrecordid>eNp1kEtPAyEUhYnRxPr4Ae4muka5MDCwNE19JE3c6JpQhlGaKVSgC_vrpRmjK1f3ke-cnByEroDcAmHyLrfARYcJJZhIrvD-CM2gazmmrYTj371jp-gs5zUhLRXAZogsRmdLisHbxsaU3GiKjyE3PjQh9mbEow-uyW7jN66YMV-gk6EOd_kzz9Hbw-J1_oSXL4_P8_sltkyKgrvOKtbynq9WPeFMtZILUG5F6zFAfVMrQDJjnHXWMNGD6ZgalBKUOjDAztH15Btz8TpbX5z9sDGEGleDJIQTVaGbCdqm-Llzueh13KVQc2naAhFcSnqgYKJsijknN-ht8huTvjQQfWhPT-3p2p4-tKf3VUMnTa5seHfpz_l_0TddbHEy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410658829</pqid></control><display><type>article</type><title>Electronic correlations in nodal-line semimetals</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shao, Yinming ; Rudenko, A. N. ; Hu, Jin ; Sun, Zhiyuan ; Zhu, Yanglin ; Moon, Seongphill ; Millis, A. J. ; Yuan, Shengjun ; Lichtenstein, A. I. ; Smirnov, Dmitry ; Mao, Z. Q. ; Katsnelson, M. I. ; Basov, D. N.</creator><creatorcontrib>Shao, Yinming ; Rudenko, A. N. ; Hu, Jin ; Sun, Zhiyuan ; Zhu, Yanglin ; Moon, Seongphill ; Millis, A. J. ; Yuan, Shengjun ; Lichtenstein, A. I. ; Smirnov, Dmitry ; Mao, Z. Q. ; Katsnelson, M. I. ; Basov, D. N. ; Pennsylvania State Univ., University Park, PA (United States) ; Florida State Univ., Tallahassee, FL (United States) ; Columbia Univ., New York, NY (United States) ; Univ. of Arkansas, Fayetteville, AR (United States)</creatorcontrib><description>Dirac fermions with highly dispersive linear bands
1
–
3
are usually considered weakly correlated due to the relatively large bandwidths (
W
) compared to Coulomb interactions (
U
). With the discovery of nodal-line semimetals, the notion of the Dirac point has been extended to lines and loops in momentum space. The anisotropy associated with nodal-line structure gives rise to greatly reduced kinetic energy along the line. However, experimental evidence for the anticipated enhanced correlations in nodal-line semimetals is sparse. Here, we report on prominent correlation effects in a nodal-line semimetal compound, ZrSiSe, through a combination of optical spectroscopy and density functional theory calculations. We observed two fundamental spectroscopic hallmarks of electronic correlations: strong reduction (1/3) of the free-carrier Drude weight and also the Fermi velocity compared to predictions of density functional band theory. The renormalization of Fermi velocity can be further controlled with an external magnetic field. ZrSiSe therefore offers the rare opportunity to investigate correlation-driven physics in a Dirac system.
What happens to topological materials when their electrons are strongly interacting is an open question. Shao and others demonstrate that ZrSiSe is a material that can address this as it has a topological band structure and non-trivial correlations.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-0859-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/119/2792 ; 639/766/119/995 ; Anisotropy ; Atomic ; Band theory ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Correlation ; Density functional theory ; Energy ; Fermions ; Kinetic energy ; Laboratories ; Letter ; Magnetic fields ; Mathematical and Computational Physics ; Metalloids ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Spectrum analysis ; Theoretical ; Topology ; Velocity</subject><ispartof>Nature physics, 2020-06, Vol.16 (6), p.636-641</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-77c9345d5bbd0539485619eb2053f1d5b2c6183aaececa36d1a739f99622e1a13</citedby><cites>FETCH-LOGICAL-c386t-77c9345d5bbd0539485619eb2053f1d5b2c6183aaececa36d1a739f99622e1a13</cites><orcidid>0000-0001-9785-5387 ; 0000-0001-6208-1502 ; 0000-0002-2891-0028 ; 0000-0001-6358-3221 ; 0000-0003-4313-3690 ; 0000-0003-0080-4239 ; 0000000343133690 ; 0000000228910028 ; 0000000163583221 ; 0000000197855387 ; 0000000300804239 ; 0000000162081502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-020-0859-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-020-0859-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1800509$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Yinming</creatorcontrib><creatorcontrib>Rudenko, A. N.</creatorcontrib><creatorcontrib>Hu, Jin</creatorcontrib><creatorcontrib>Sun, Zhiyuan</creatorcontrib><creatorcontrib>Zhu, Yanglin</creatorcontrib><creatorcontrib>Moon, Seongphill</creatorcontrib><creatorcontrib>Millis, A. J.</creatorcontrib><creatorcontrib>Yuan, Shengjun</creatorcontrib><creatorcontrib>Lichtenstein, A. I.</creatorcontrib><creatorcontrib>Smirnov, Dmitry</creatorcontrib><creatorcontrib>Mao, Z. Q.</creatorcontrib><creatorcontrib>Katsnelson, M. I.</creatorcontrib><creatorcontrib>Basov, D. N.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><creatorcontrib>Florida State Univ., Tallahassee, FL (United States)</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Arkansas, Fayetteville, AR (United States)</creatorcontrib><title>Electronic correlations in nodal-line semimetals</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Dirac fermions with highly dispersive linear bands
1
–
3
are usually considered weakly correlated due to the relatively large bandwidths (
W
) compared to Coulomb interactions (
U
). With the discovery of nodal-line semimetals, the notion of the Dirac point has been extended to lines and loops in momentum space. The anisotropy associated with nodal-line structure gives rise to greatly reduced kinetic energy along the line. However, experimental evidence for the anticipated enhanced correlations in nodal-line semimetals is sparse. Here, we report on prominent correlation effects in a nodal-line semimetal compound, ZrSiSe, through a combination of optical spectroscopy and density functional theory calculations. We observed two fundamental spectroscopic hallmarks of electronic correlations: strong reduction (1/3) of the free-carrier Drude weight and also the Fermi velocity compared to predictions of density functional band theory. The renormalization of Fermi velocity can be further controlled with an external magnetic field. ZrSiSe therefore offers the rare opportunity to investigate correlation-driven physics in a Dirac system.
What happens to topological materials when their electrons are strongly interacting is an open question. Shao and others demonstrate that ZrSiSe is a material that can address this as it has a topological band structure and non-trivial correlations.</description><subject>639/766/119</subject><subject>639/766/119/2792</subject><subject>639/766/119/995</subject><subject>Anisotropy</subject><subject>Atomic</subject><subject>Band theory</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Correlation</subject><subject>Density functional theory</subject><subject>Energy</subject><subject>Fermions</subject><subject>Kinetic energy</subject><subject>Laboratories</subject><subject>Letter</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Metalloids</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spectrum analysis</subject><subject>Theoretical</subject><subject>Topology</subject><subject>Velocity</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtPAyEUhYnRxPr4Ae4muka5MDCwNE19JE3c6JpQhlGaKVSgC_vrpRmjK1f3ke-cnByEroDcAmHyLrfARYcJJZhIrvD-CM2gazmmrYTj371jp-gs5zUhLRXAZogsRmdLisHbxsaU3GiKjyE3PjQh9mbEow-uyW7jN66YMV-gk6EOd_kzz9Hbw-J1_oSXL4_P8_sltkyKgrvOKtbynq9WPeFMtZILUG5F6zFAfVMrQDJjnHXWMNGD6ZgalBKUOjDAztH15Btz8TpbX5z9sDGEGleDJIQTVaGbCdqm-Llzueh13KVQc2naAhFcSnqgYKJsijknN-ht8huTvjQQfWhPT-3p2p4-tKf3VUMnTa5seHfpz_l_0TddbHEy</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Shao, Yinming</creator><creator>Rudenko, A. N.</creator><creator>Hu, Jin</creator><creator>Sun, Zhiyuan</creator><creator>Zhu, Yanglin</creator><creator>Moon, Seongphill</creator><creator>Millis, A. J.</creator><creator>Yuan, Shengjun</creator><creator>Lichtenstein, A. I.</creator><creator>Smirnov, Dmitry</creator><creator>Mao, Z. Q.</creator><creator>Katsnelson, M. I.</creator><creator>Basov, D. N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9785-5387</orcidid><orcidid>https://orcid.org/0000-0001-6208-1502</orcidid><orcidid>https://orcid.org/0000-0002-2891-0028</orcidid><orcidid>https://orcid.org/0000-0001-6358-3221</orcidid><orcidid>https://orcid.org/0000-0003-4313-3690</orcidid><orcidid>https://orcid.org/0000-0003-0080-4239</orcidid><orcidid>https://orcid.org/0000000343133690</orcidid><orcidid>https://orcid.org/0000000228910028</orcidid><orcidid>https://orcid.org/0000000163583221</orcidid><orcidid>https://orcid.org/0000000197855387</orcidid><orcidid>https://orcid.org/0000000300804239</orcidid><orcidid>https://orcid.org/0000000162081502</orcidid></search><sort><creationdate>20200601</creationdate><title>Electronic correlations in nodal-line semimetals</title><author>Shao, Yinming ; Rudenko, A. N. ; Hu, Jin ; Sun, Zhiyuan ; Zhu, Yanglin ; Moon, Seongphill ; Millis, A. J. ; Yuan, Shengjun ; Lichtenstein, A. I. ; Smirnov, Dmitry ; Mao, Z. Q. ; Katsnelson, M. I. ; Basov, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-77c9345d5bbd0539485619eb2053f1d5b2c6183aaececa36d1a739f99622e1a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119</topic><topic>639/766/119/2792</topic><topic>639/766/119/995</topic><topic>Anisotropy</topic><topic>Atomic</topic><topic>Band theory</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Correlation</topic><topic>Density functional theory</topic><topic>Energy</topic><topic>Fermions</topic><topic>Kinetic energy</topic><topic>Laboratories</topic><topic>Letter</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Metalloids</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spectrum analysis</topic><topic>Theoretical</topic><topic>Topology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yinming</creatorcontrib><creatorcontrib>Rudenko, A. N.</creatorcontrib><creatorcontrib>Hu, Jin</creatorcontrib><creatorcontrib>Sun, Zhiyuan</creatorcontrib><creatorcontrib>Zhu, Yanglin</creatorcontrib><creatorcontrib>Moon, Seongphill</creatorcontrib><creatorcontrib>Millis, A. J.</creatorcontrib><creatorcontrib>Yuan, Shengjun</creatorcontrib><creatorcontrib>Lichtenstein, A. I.</creatorcontrib><creatorcontrib>Smirnov, Dmitry</creatorcontrib><creatorcontrib>Mao, Z. Q.</creatorcontrib><creatorcontrib>Katsnelson, M. I.</creatorcontrib><creatorcontrib>Basov, D. N.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><creatorcontrib>Florida State Univ., Tallahassee, FL (United States)</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Arkansas, Fayetteville, AR (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Yinming</au><au>Rudenko, A. N.</au><au>Hu, Jin</au><au>Sun, Zhiyuan</au><au>Zhu, Yanglin</au><au>Moon, Seongphill</au><au>Millis, A. J.</au><au>Yuan, Shengjun</au><au>Lichtenstein, A. I.</au><au>Smirnov, Dmitry</au><au>Mao, Z. Q.</au><au>Katsnelson, M. I.</au><au>Basov, D. N.</au><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><aucorp>Florida State Univ., Tallahassee, FL (United States)</aucorp><aucorp>Columbia Univ., New York, NY (United States)</aucorp><aucorp>Univ. of Arkansas, Fayetteville, AR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic correlations in nodal-line semimetals</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>636</spage><epage>641</epage><pages>636-641</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Dirac fermions with highly dispersive linear bands
1
–
3
are usually considered weakly correlated due to the relatively large bandwidths (
W
) compared to Coulomb interactions (
U
). With the discovery of nodal-line semimetals, the notion of the Dirac point has been extended to lines and loops in momentum space. The anisotropy associated with nodal-line structure gives rise to greatly reduced kinetic energy along the line. However, experimental evidence for the anticipated enhanced correlations in nodal-line semimetals is sparse. Here, we report on prominent correlation effects in a nodal-line semimetal compound, ZrSiSe, through a combination of optical spectroscopy and density functional theory calculations. We observed two fundamental spectroscopic hallmarks of electronic correlations: strong reduction (1/3) of the free-carrier Drude weight and also the Fermi velocity compared to predictions of density functional band theory. The renormalization of Fermi velocity can be further controlled with an external magnetic field. ZrSiSe therefore offers the rare opportunity to investigate correlation-driven physics in a Dirac system.
What happens to topological materials when their electrons are strongly interacting is an open question. Shao and others demonstrate that ZrSiSe is a material that can address this as it has a topological band structure and non-trivial correlations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0859-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9785-5387</orcidid><orcidid>https://orcid.org/0000-0001-6208-1502</orcidid><orcidid>https://orcid.org/0000-0002-2891-0028</orcidid><orcidid>https://orcid.org/0000-0001-6358-3221</orcidid><orcidid>https://orcid.org/0000-0003-4313-3690</orcidid><orcidid>https://orcid.org/0000-0003-0080-4239</orcidid><orcidid>https://orcid.org/0000000343133690</orcidid><orcidid>https://orcid.org/0000000228910028</orcidid><orcidid>https://orcid.org/0000000163583221</orcidid><orcidid>https://orcid.org/0000000197855387</orcidid><orcidid>https://orcid.org/0000000300804239</orcidid><orcidid>https://orcid.org/0000000162081502</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-06, Vol.16 (6), p.636-641 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_osti_scitechconnect_1800509 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/766/119 639/766/119/2792 639/766/119/995 Anisotropy Atomic Band theory Classical and Continuum Physics Complex Systems Condensed Matter Physics Correlation Density functional theory Energy Fermions Kinetic energy Laboratories Letter Magnetic fields Mathematical and Computational Physics Metalloids Molecular Optical and Plasma Physics Physics Physics and Astronomy Spectrum analysis Theoretical Topology Velocity |
title | Electronic correlations in nodal-line semimetals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20correlations%20in%20nodal-line%20semimetals&rft.jtitle=Nature%20physics&rft.au=Shao,%20Yinming&rft.aucorp=Pennsylvania%20State%20Univ.,%20University%20Park,%20PA%20(United%20States)&rft.date=2020-06-01&rft.volume=16&rft.issue=6&rft.spage=636&rft.epage=641&rft.pages=636-641&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0859-z&rft_dat=%3Cproquest_osti_%3E2410658829%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410658829&rft_id=info:pmid/&rfr_iscdi=true |