Kinetics Features Conducive to Cache-Type Nonvolatile Phase-Change Memory

Cache-type phase-change random-access memory is a remaining challenge on the path to universal memory. The recently designed Sc0.2Sb2Te3 (SST) alloy is one of the most promising phase-change materials (PCMs) to overcome this challenge, as it allows subnanosecond crystallization speed to reach the cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2019-11, Vol.31 (21), p.8794-8800
Hauptverfasser: Chen, Bin, Chen, Yimin, Ding, Keyuan, Li, Kunlong, Jiao, Fangying, Wang, Lei, Zeng, Xierong, Wang, Junqiang, Shen, Xiang, Zhang, Wei, Rao, Feng, Ma, Evan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8800
container_issue 21
container_start_page 8794
container_title Chemistry of materials
container_volume 31
creator Chen, Bin
Chen, Yimin
Ding, Keyuan
Li, Kunlong
Jiao, Fangying
Wang, Lei
Zeng, Xierong
Wang, Junqiang
Shen, Xiang
Zhang, Wei
Rao, Feng
Ma, Evan
description Cache-type phase-change random-access memory is a remaining challenge on the path to universal memory. The recently designed Sc0.2Sb2Te3 (SST) alloy is one of the most promising phase-change materials (PCMs) to overcome this challenge, as it allows subnanosecond crystallization speed to reach the crystalline (“1”) state at elevated temperatures (e.g., 600 K) but years of reliable retention of the amorphous (“0”) state for data storage at room temperature. This contrast in kinetics behavior, upon a relatively small temperature excursion, is more dramatic than that in other PCMs. From the temperature dependence of the crystallization kinetics uncovered via ultrafast differential scanning calorimetry, here, we report an apparent fragile-to-strong crossover in the SST supercooled liquid. We illustrate that two factors are at work simultaneously. First, Sc-stabilized precursors serve as heterogeneous sites to catalyze nucleation, reducing the stochasticity and thereby accelerating the nucleation rate. Second, the SST exhibits an enlarged kinetic contrast between elevated and ambient temperatures. Together they constitute a recipe for the design of PCMs that meets the needs of cache-type nonvolatile memory.
doi_str_mv 10.1021/acs.chemmater.9b02598
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1800127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d83874010</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-32d340c2ba780a1b0af6c0d6b6171c079bf53fd377099ea2a6c1c1f5fb6ec47b3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_ghC8p85ummxylGC1WD8O9bxMJhOT0mbL7rbQf29Ki1dPc5j3eeF9hLiXMJGg5COSn1DLmw0GdpOiApUW-YUYyVRBnAKoSzGCvNDxVKfZtbjxfgUgBzQfiflb13PoyEczxrBz7KPS9vWOuj1HwUYlDs3x8rDl6MP2e7vG0K05-mrRc1y22P9w9M4b6w634qrBtee78x2L79nzsnyNF58v8_JpEWOiVIgTVSdTIFWhzgFlBdhkBHVWZVJLAl1UTZo0daI1FAWjwowkySZtqoxpqqtkLB5OvdaHznjqAlNLtu-ZgpH5sEzpIZSeQuSs944bs3XdBt3BSDBHaWaQZv6kmbO0gZMn7vhe2Z3rhyn_ML9YMXTz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetics Features Conducive to Cache-Type Nonvolatile Phase-Change Memory</title><source>ACS Publications</source><creator>Chen, Bin ; Chen, Yimin ; Ding, Keyuan ; Li, Kunlong ; Jiao, Fangying ; Wang, Lei ; Zeng, Xierong ; Wang, Junqiang ; Shen, Xiang ; Zhang, Wei ; Rao, Feng ; Ma, Evan</creator><creatorcontrib>Chen, Bin ; Chen, Yimin ; Ding, Keyuan ; Li, Kunlong ; Jiao, Fangying ; Wang, Lei ; Zeng, Xierong ; Wang, Junqiang ; Shen, Xiang ; Zhang, Wei ; Rao, Feng ; Ma, Evan ; Johns Hopkins Univ., Baltimore, MD (United States)</creatorcontrib><description>Cache-type phase-change random-access memory is a remaining challenge on the path to universal memory. The recently designed Sc0.2Sb2Te3 (SST) alloy is one of the most promising phase-change materials (PCMs) to overcome this challenge, as it allows subnanosecond crystallization speed to reach the crystalline (“1”) state at elevated temperatures (e.g., 600 K) but years of reliable retention of the amorphous (“0”) state for data storage at room temperature. This contrast in kinetics behavior, upon a relatively small temperature excursion, is more dramatic than that in other PCMs. From the temperature dependence of the crystallization kinetics uncovered via ultrafast differential scanning calorimetry, here, we report an apparent fragile-to-strong crossover in the SST supercooled liquid. We illustrate that two factors are at work simultaneously. First, Sc-stabilized precursors serve as heterogeneous sites to catalyze nucleation, reducing the stochasticity and thereby accelerating the nucleation rate. Second, the SST exhibits an enlarged kinetic contrast between elevated and ambient temperatures. Together they constitute a recipe for the design of PCMs that meets the needs of cache-type nonvolatile memory.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b02598</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science</subject><ispartof>Chemistry of materials, 2019-11, Vol.31 (21), p.8794-8800</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-32d340c2ba780a1b0af6c0d6b6171c079bf53fd377099ea2a6c1c1f5fb6ec47b3</citedby><cites>FETCH-LOGICAL-a322t-32d340c2ba780a1b0af6c0d6b6171c079bf53fd377099ea2a6c1c1f5fb6ec47b3</cites><orcidid>0000-0002-6922-5393 ; 0000-0003-1591-0843 ; 0000-0002-2313-2095 ; 0000-0002-0720-4781 ; 0000-0002-3057-5062 ; 0000000269225393 ; 0000000207204781 ; 0000000223132095 ; 0000000315910843 ; 0000000230575062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b02598$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b02598$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1800127$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Chen, Yimin</creatorcontrib><creatorcontrib>Ding, Keyuan</creatorcontrib><creatorcontrib>Li, Kunlong</creatorcontrib><creatorcontrib>Jiao, Fangying</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zeng, Xierong</creatorcontrib><creatorcontrib>Wang, Junqiang</creatorcontrib><creatorcontrib>Shen, Xiang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Rao, Feng</creatorcontrib><creatorcontrib>Ma, Evan</creatorcontrib><creatorcontrib>Johns Hopkins Univ., Baltimore, MD (United States)</creatorcontrib><title>Kinetics Features Conducive to Cache-Type Nonvolatile Phase-Change Memory</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Cache-type phase-change random-access memory is a remaining challenge on the path to universal memory. The recently designed Sc0.2Sb2Te3 (SST) alloy is one of the most promising phase-change materials (PCMs) to overcome this challenge, as it allows subnanosecond crystallization speed to reach the crystalline (“1”) state at elevated temperatures (e.g., 600 K) but years of reliable retention of the amorphous (“0”) state for data storage at room temperature. This contrast in kinetics behavior, upon a relatively small temperature excursion, is more dramatic than that in other PCMs. From the temperature dependence of the crystallization kinetics uncovered via ultrafast differential scanning calorimetry, here, we report an apparent fragile-to-strong crossover in the SST supercooled liquid. We illustrate that two factors are at work simultaneously. First, Sc-stabilized precursors serve as heterogeneous sites to catalyze nucleation, reducing the stochasticity and thereby accelerating the nucleation rate. Second, the SST exhibits an enlarged kinetic contrast between elevated and ambient temperatures. Together they constitute a recipe for the design of PCMs that meets the needs of cache-type nonvolatile memory.</description><subject>Chemistry</subject><subject>Materials Science</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFZ_ghC8p85ummxylGC1WD8O9bxMJhOT0mbL7rbQf29Ki1dPc5j3eeF9hLiXMJGg5COSn1DLmw0GdpOiApUW-YUYyVRBnAKoSzGCvNDxVKfZtbjxfgUgBzQfiflb13PoyEczxrBz7KPS9vWOuj1HwUYlDs3x8rDl6MP2e7vG0K05-mrRc1y22P9w9M4b6w634qrBtee78x2L79nzsnyNF58v8_JpEWOiVIgTVSdTIFWhzgFlBdhkBHVWZVJLAl1UTZo0daI1FAWjwowkySZtqoxpqqtkLB5OvdaHznjqAlNLtu-ZgpH5sEzpIZSeQuSs944bs3XdBt3BSDBHaWaQZv6kmbO0gZMn7vhe2Z3rhyn_ML9YMXTz</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Chen, Bin</creator><creator>Chen, Yimin</creator><creator>Ding, Keyuan</creator><creator>Li, Kunlong</creator><creator>Jiao, Fangying</creator><creator>Wang, Lei</creator><creator>Zeng, Xierong</creator><creator>Wang, Junqiang</creator><creator>Shen, Xiang</creator><creator>Zhang, Wei</creator><creator>Rao, Feng</creator><creator>Ma, Evan</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6922-5393</orcidid><orcidid>https://orcid.org/0000-0003-1591-0843</orcidid><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid><orcidid>https://orcid.org/0000-0002-0720-4781</orcidid><orcidid>https://orcid.org/0000-0002-3057-5062</orcidid><orcidid>https://orcid.org/0000000269225393</orcidid><orcidid>https://orcid.org/0000000207204781</orcidid><orcidid>https://orcid.org/0000000223132095</orcidid><orcidid>https://orcid.org/0000000315910843</orcidid><orcidid>https://orcid.org/0000000230575062</orcidid></search><sort><creationdate>20191112</creationdate><title>Kinetics Features Conducive to Cache-Type Nonvolatile Phase-Change Memory</title><author>Chen, Bin ; Chen, Yimin ; Ding, Keyuan ; Li, Kunlong ; Jiao, Fangying ; Wang, Lei ; Zeng, Xierong ; Wang, Junqiang ; Shen, Xiang ; Zhang, Wei ; Rao, Feng ; Ma, Evan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-32d340c2ba780a1b0af6c0d6b6171c079bf53fd377099ea2a6c1c1f5fb6ec47b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Chen, Yimin</creatorcontrib><creatorcontrib>Ding, Keyuan</creatorcontrib><creatorcontrib>Li, Kunlong</creatorcontrib><creatorcontrib>Jiao, Fangying</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zeng, Xierong</creatorcontrib><creatorcontrib>Wang, Junqiang</creatorcontrib><creatorcontrib>Shen, Xiang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Rao, Feng</creatorcontrib><creatorcontrib>Ma, Evan</creatorcontrib><creatorcontrib>Johns Hopkins Univ., Baltimore, MD (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Bin</au><au>Chen, Yimin</au><au>Ding, Keyuan</au><au>Li, Kunlong</au><au>Jiao, Fangying</au><au>Wang, Lei</au><au>Zeng, Xierong</au><au>Wang, Junqiang</au><au>Shen, Xiang</au><au>Zhang, Wei</au><au>Rao, Feng</au><au>Ma, Evan</au><aucorp>Johns Hopkins Univ., Baltimore, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics Features Conducive to Cache-Type Nonvolatile Phase-Change Memory</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-11-12</date><risdate>2019</risdate><volume>31</volume><issue>21</issue><spage>8794</spage><epage>8800</epage><pages>8794-8800</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Cache-type phase-change random-access memory is a remaining challenge on the path to universal memory. The recently designed Sc0.2Sb2Te3 (SST) alloy is one of the most promising phase-change materials (PCMs) to overcome this challenge, as it allows subnanosecond crystallization speed to reach the crystalline (“1”) state at elevated temperatures (e.g., 600 K) but years of reliable retention of the amorphous (“0”) state for data storage at room temperature. This contrast in kinetics behavior, upon a relatively small temperature excursion, is more dramatic than that in other PCMs. From the temperature dependence of the crystallization kinetics uncovered via ultrafast differential scanning calorimetry, here, we report an apparent fragile-to-strong crossover in the SST supercooled liquid. We illustrate that two factors are at work simultaneously. First, Sc-stabilized precursors serve as heterogeneous sites to catalyze nucleation, reducing the stochasticity and thereby accelerating the nucleation rate. Second, the SST exhibits an enlarged kinetic contrast between elevated and ambient temperatures. Together they constitute a recipe for the design of PCMs that meets the needs of cache-type nonvolatile memory.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b02598</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6922-5393</orcidid><orcidid>https://orcid.org/0000-0003-1591-0843</orcidid><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid><orcidid>https://orcid.org/0000-0002-0720-4781</orcidid><orcidid>https://orcid.org/0000-0002-3057-5062</orcidid><orcidid>https://orcid.org/0000000269225393</orcidid><orcidid>https://orcid.org/0000000207204781</orcidid><orcidid>https://orcid.org/0000000223132095</orcidid><orcidid>https://orcid.org/0000000315910843</orcidid><orcidid>https://orcid.org/0000000230575062</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2019-11, Vol.31 (21), p.8794-8800
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1800127
source ACS Publications
subjects Chemistry
Materials Science
title Kinetics Features Conducive to Cache-Type Nonvolatile Phase-Change Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20Features%20Conducive%20to%20Cache-Type%20Nonvolatile%20Phase-Change%20Memory&rft.jtitle=Chemistry%20of%20materials&rft.au=Chen,%20Bin&rft.aucorp=Johns%20Hopkins%20Univ.,%20Baltimore,%20MD%20(United%20States)&rft.date=2019-11-12&rft.volume=31&rft.issue=21&rft.spage=8794&rft.epage=8800&rft.pages=8794-8800&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b02598&rft_dat=%3Cacs_osti_%3Ed83874010%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true