Constraining the neutron-matter equation of state with gravitational waves
We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter. In particular, the neutron-matter EoS between 1 and 2 times t...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2019-10, Vol.100 (8), Article 083010 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physical review. D |
container_volume | 100 |
creator | Forbes, Michael McNeil Bose, Sukanta Reddy, Sanjay Zhou, Dake Mukherjee, Arunava De, Soumi |
description | We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter. In particular, the neutron-matter EoS between 1 and 2 times the nuclear saturation density n0≈0.16 fm−3 can be constrained to within 20%, given the simulated data from about 15 merger events. Using Fisher information methods, we combine observational constraints from simulated BNS merger events drawn from various population models with independent measurements of the neutron star radii expected from x-ray astronomy [the Neutron Star Interior Composition Explorer observations in particular] to directly constrain nuclear physics parameters. To parametrize the nuclear EoS, we use a different approach, expanding from pure nuclear matter rather than from symmetric nuclear matter to make use of recent quantum Monte Carlo calculations. This method eschews the need to invoke the so-called parabolic approximation to extrapolate from symmetric nuclear matter, allowing us to directly constrain the neutron-matter EoS. Using a principal component analysis, we identify the combination of parameters most tightly constrained by observational data. We discuss sensitivity to various effects such as different component masses through population-model sensitivity, phase transitions in the core EoS, and large deviations from the central parameter values. |
doi_str_mv | 10.1103/PhysRevD.100.083010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1799981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316407757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-94fb89d465895a5ae79fe55b89993a603659c7e1320122caba64ab8ae63bddac3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS9BnztvmrZpHmX-Z6CIPofbLF07tmRL0o19e6tVn-7hnB-HyyHkksGUMeA3b80xvJv93ZQBTKHkwOCEjNJMQAKQytN_zeCcTEJYQS8LkIKxEXmZORuix9a2dkljY6g1XfTOJhuM0Xhqdh3G1lnqahoiRkMPbWzo0uO-jT8JrukB9yZckLMa18FMfu-YfD7cf8yekvnr4_Psdp5oDllMZFZXpVxkRV7KHHM0QtYmz3tPSo4F8CKXWhjGU2BpqrHCIsOqRFPwarFAzcfkauh1IbYq6DYa3WhnrdFRMdHXlKyHrgdo692uMyGqlet8_2tQKWdFBkLkoqf4QGnvQvCmVlvfbtAfFQP1Pa76G7c3QA3j8i8osm7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316407757</pqid></control><display><type>article</type><title>Constraining the neutron-matter equation of state with gravitational waves</title><source>American Physical Society</source><creator>Forbes, Michael McNeil ; Bose, Sukanta ; Reddy, Sanjay ; Zhou, Dake ; Mukherjee, Arunava ; De, Soumi</creator><creatorcontrib>Forbes, Michael McNeil ; Bose, Sukanta ; Reddy, Sanjay ; Zhou, Dake ; Mukherjee, Arunava ; De, Soumi ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter. In particular, the neutron-matter EoS between 1 and 2 times the nuclear saturation density n0≈0.16 fm−3 can be constrained to within 20%, given the simulated data from about 15 merger events. Using Fisher information methods, we combine observational constraints from simulated BNS merger events drawn from various population models with independent measurements of the neutron star radii expected from x-ray astronomy [the Neutron Star Interior Composition Explorer observations in particular] to directly constrain nuclear physics parameters. To parametrize the nuclear EoS, we use a different approach, expanding from pure nuclear matter rather than from symmetric nuclear matter to make use of recent quantum Monte Carlo calculations. This method eschews the need to invoke the so-called parabolic approximation to extrapolate from symmetric nuclear matter, allowing us to directly constrain the neutron-matter EoS. Using a principal component analysis, we identify the combination of parameters most tightly constrained by observational data. We discuss sensitivity to various effects such as different component masses through population-model sensitivity, phase transitions in the core EoS, and large deviations from the central parameter values.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.100.083010</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Astronomy & Astrophysics ; ASTRONOMY AND ASTROPHYSICS ; Binary stars ; Computer simulation ; Constraint modelling ; Equations of state ; Gravitation ; Gravitational waves ; Neutron stars ; Neutrons ; Nuclear matter ; Nuclear physics ; Parameter identification ; Parameter sensitivity ; Phase transitions ; Physics ; Principal components analysis ; Sensitivity ; X-ray astronomy</subject><ispartof>Physical review. D, 2019-10, Vol.100 (8), Article 083010</ispartof><rights>Copyright American Physical Society Oct 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-94fb89d465895a5ae79fe55b89993a603659c7e1320122caba64ab8ae63bddac3</citedby><cites>FETCH-LOGICAL-c304t-94fb89d465895a5ae79fe55b89993a603659c7e1320122caba64ab8ae63bddac3</cites><orcidid>0000-0003-1420-9609 ; 0000000314209609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1799981$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Forbes, Michael McNeil</creatorcontrib><creatorcontrib>Bose, Sukanta</creatorcontrib><creatorcontrib>Reddy, Sanjay</creatorcontrib><creatorcontrib>Zhou, Dake</creatorcontrib><creatorcontrib>Mukherjee, Arunava</creatorcontrib><creatorcontrib>De, Soumi</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Constraining the neutron-matter equation of state with gravitational waves</title><title>Physical review. D</title><description>We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter. In particular, the neutron-matter EoS between 1 and 2 times the nuclear saturation density n0≈0.16 fm−3 can be constrained to within 20%, given the simulated data from about 15 merger events. Using Fisher information methods, we combine observational constraints from simulated BNS merger events drawn from various population models with independent measurements of the neutron star radii expected from x-ray astronomy [the Neutron Star Interior Composition Explorer observations in particular] to directly constrain nuclear physics parameters. To parametrize the nuclear EoS, we use a different approach, expanding from pure nuclear matter rather than from symmetric nuclear matter to make use of recent quantum Monte Carlo calculations. This method eschews the need to invoke the so-called parabolic approximation to extrapolate from symmetric nuclear matter, allowing us to directly constrain the neutron-matter EoS. Using a principal component analysis, we identify the combination of parameters most tightly constrained by observational data. We discuss sensitivity to various effects such as different component masses through population-model sensitivity, phase transitions in the core EoS, and large deviations from the central parameter values.</description><subject>Astronomy & Astrophysics</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Binary stars</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Equations of state</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear matter</subject><subject>Nuclear physics</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Principal components analysis</subject><subject>Sensitivity</subject><subject>X-ray astronomy</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS9BnztvmrZpHmX-Z6CIPofbLF07tmRL0o19e6tVn-7hnB-HyyHkksGUMeA3b80xvJv93ZQBTKHkwOCEjNJMQAKQytN_zeCcTEJYQS8LkIKxEXmZORuix9a2dkljY6g1XfTOJhuM0Xhqdh3G1lnqahoiRkMPbWzo0uO-jT8JrukB9yZckLMa18FMfu-YfD7cf8yekvnr4_Psdp5oDllMZFZXpVxkRV7KHHM0QtYmz3tPSo4F8CKXWhjGU2BpqrHCIsOqRFPwarFAzcfkauh1IbYq6DYa3WhnrdFRMdHXlKyHrgdo692uMyGqlet8_2tQKWdFBkLkoqf4QGnvQvCmVlvfbtAfFQP1Pa76G7c3QA3j8i8osm7A</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Forbes, Michael McNeil</creator><creator>Bose, Sukanta</creator><creator>Reddy, Sanjay</creator><creator>Zhou, Dake</creator><creator>Mukherjee, Arunava</creator><creator>De, Soumi</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1420-9609</orcidid><orcidid>https://orcid.org/0000000314209609</orcidid></search><sort><creationdate>20191015</creationdate><title>Constraining the neutron-matter equation of state with gravitational waves</title><author>Forbes, Michael McNeil ; Bose, Sukanta ; Reddy, Sanjay ; Zhou, Dake ; Mukherjee, Arunava ; De, Soumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-94fb89d465895a5ae79fe55b89993a603659c7e1320122caba64ab8ae63bddac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy & Astrophysics</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Binary stars</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Equations of state</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear matter</topic><topic>Nuclear physics</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Principal components analysis</topic><topic>Sensitivity</topic><topic>X-ray astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forbes, Michael McNeil</creatorcontrib><creatorcontrib>Bose, Sukanta</creatorcontrib><creatorcontrib>Reddy, Sanjay</creatorcontrib><creatorcontrib>Zhou, Dake</creatorcontrib><creatorcontrib>Mukherjee, Arunava</creatorcontrib><creatorcontrib>De, Soumi</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forbes, Michael McNeil</au><au>Bose, Sukanta</au><au>Reddy, Sanjay</au><au>Zhou, Dake</au><au>Mukherjee, Arunava</au><au>De, Soumi</au><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining the neutron-matter equation of state with gravitational waves</atitle><jtitle>Physical review. D</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>100</volume><issue>8</issue><artnum>083010</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter. In particular, the neutron-matter EoS between 1 and 2 times the nuclear saturation density n0≈0.16 fm−3 can be constrained to within 20%, given the simulated data from about 15 merger events. Using Fisher information methods, we combine observational constraints from simulated BNS merger events drawn from various population models with independent measurements of the neutron star radii expected from x-ray astronomy [the Neutron Star Interior Composition Explorer observations in particular] to directly constrain nuclear physics parameters. To parametrize the nuclear EoS, we use a different approach, expanding from pure nuclear matter rather than from symmetric nuclear matter to make use of recent quantum Monte Carlo calculations. This method eschews the need to invoke the so-called parabolic approximation to extrapolate from symmetric nuclear matter, allowing us to directly constrain the neutron-matter EoS. Using a principal component analysis, we identify the combination of parameters most tightly constrained by observational data. We discuss sensitivity to various effects such as different component masses through population-model sensitivity, phase transitions in the core EoS, and large deviations from the central parameter values.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.100.083010</doi><orcidid>https://orcid.org/0000-0003-1420-9609</orcidid><orcidid>https://orcid.org/0000000314209609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2019-10, Vol.100 (8), Article 083010 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1799981 |
source | American Physical Society |
subjects | Astronomy & Astrophysics ASTRONOMY AND ASTROPHYSICS Binary stars Computer simulation Constraint modelling Equations of state Gravitation Gravitational waves Neutron stars Neutrons Nuclear matter Nuclear physics Parameter identification Parameter sensitivity Phase transitions Physics Principal components analysis Sensitivity X-ray astronomy |
title | Constraining the neutron-matter equation of state with gravitational waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20the%20neutron-matter%20equation%20of%20state%20with%20gravitational%20waves&rft.jtitle=Physical%20review.%20D&rft.au=Forbes,%20Michael%20McNeil&rft.aucorp=Univ.%20of%20Washington,%20Seattle,%20WA%20(United%20States)&rft.date=2019-10-15&rft.volume=100&rft.issue=8&rft.artnum=083010&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.100.083010&rft_dat=%3Cproquest_osti_%3E2316407757%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316407757&rft_id=info:pmid/&rfr_iscdi=true |