Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation

Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2020-09, Vol.53 (9), p.4231-4250
Hauptverfasser: Kramarov, Vladyslav, Parrikar, Prathmesh Naik, Mokhtari, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4250
container_issue 9
container_start_page 4231
container_title Rock mechanics and rock engineering
container_volume 53
creator Kramarov, Vladyslav
Parrikar, Prathmesh Naik
Mokhtari, Mehdi
description Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining semi-circular bend test (SCB) and digital image correlation (DIC). Experiments were carried out in different notch orientations with respect to bedding. DIC is used to measure full-field displacements and to visualize and quantify fracture process zone (FPZ). Full-field displacements from DIC are utilized in Williams’ series solution to extract critical stress intensity factor, or fracture toughness. Accuracy of measuring fracture toughness using DIC displacements depends on area of interest (AOI), field of view (FOV), and the number of terms of solution ( N ). A parametric study is conducted, allowing to choose an optimal set of these parameters for evaluation of fracture toughness in rock specimens. It is known that fracture toughness values obtained directly from the SCB test, using conventional maximum load method, are underestimated due to the effect of nonlinear behavior caused by the fracture process zone. FPZ length is considered as an increase in the effective crack length. Irwin’s correction for effective crack length is utilized to measure fracture toughness values obtained directly from the SCB test that account for the fracture process zone. Fracture toughness values measured using DIC method and Irwin’s correction method are in a good match for both Berea Sandstone and Mancos Shale. Both methods show higher fracture toughness for samples in arrester orientation. In addition, the results show that FPZ length in Berea Sandstone is much larger than in Mancos Shale.
doi_str_mv 10.1007/s00603-020-02171-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1799933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431678917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-84c8b33a245194a2e268b37b916af019c154eb9518d3b521063ab5e410ddbde43</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPQ82r-7WZzlNpqoeChLXoL2Wy63bJNapIV_PamXcGbhzCZmd97DA-AW4weMEL8MSBUIJohgtLDHGf8DIwwoyxjOf04ByPECc1IQckluAphh1Ba8nIE3qdfqutVbJ2FbgNnXunYewNXrm-21oRwnC6VrUN01sD0gcut6gxch9Y28Llt2qg6ON-rxsCJ8950J7NrcLFRXTA3v3UM1rPpavKaLd5e5pOnRaYpK2JWMl1WlCrCciyYIoYUqeeVwIXaICw0zpmpRI7LmlY5waigqsoNw6iuq9owOgZ3g68LsZVBt9HorXbWGh0l5kIIShN0P0AH7z57E6Lcud7bdJckjOKClwLzRJGB0t6F4M1GHny7V_5bYiSPKcshZZlSlqeU5VFEB1FIsG2M_7P-R_UDyZN-Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431678917</pqid></control><display><type>article</type><title>Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation</title><source>SpringerLink Journals</source><creator>Kramarov, Vladyslav ; Parrikar, Prathmesh Naik ; Mokhtari, Mehdi</creator><creatorcontrib>Kramarov, Vladyslav ; Parrikar, Prathmesh Naik ; Mokhtari, Mehdi ; Univ. of Louisiana, Lafayette, LA (United States)</creatorcontrib><description>Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining semi-circular bend test (SCB) and digital image correlation (DIC). Experiments were carried out in different notch orientations with respect to bedding. DIC is used to measure full-field displacements and to visualize and quantify fracture process zone (FPZ). Full-field displacements from DIC are utilized in Williams’ series solution to extract critical stress intensity factor, or fracture toughness. Accuracy of measuring fracture toughness using DIC displacements depends on area of interest (AOI), field of view (FOV), and the number of terms of solution ( N ). A parametric study is conducted, allowing to choose an optimal set of these parameters for evaluation of fracture toughness in rock specimens. It is known that fracture toughness values obtained directly from the SCB test, using conventional maximum load method, are underestimated due to the effect of nonlinear behavior caused by the fracture process zone. FPZ length is considered as an increase in the effective crack length. Irwin’s correction for effective crack length is utilized to measure fracture toughness values obtained directly from the SCB test that account for the fracture process zone. Fracture toughness values measured using DIC method and Irwin’s correction method are in a good match for both Berea Sandstone and Mancos Shale. Both methods show higher fracture toughness for samples in arrester orientation. In addition, the results show that FPZ length in Berea Sandstone is much larger than in Mancos Shale.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-020-02171-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Bend tests ; Civil Engineering ; Correlation ; Critical components ; Digital imaging ; Displacement ; Earth and Environmental Science ; Earth Sciences ; Engineering ; Evaluation ; Field of view ; Fracture toughness ; Geology ; Geophysics/Geodesy ; Heat treating ; Hydraulic fracturing ; Length ; Orientation ; Original Paper ; Sandstone ; Sedimentary rocks ; Shale ; Shale gas ; Shales ; Stress intensity factors ; Toughness</subject><ispartof>Rock mechanics and rock engineering, 2020-09, Vol.53 (9), p.4231-4250</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-84c8b33a245194a2e268b37b916af019c154eb9518d3b521063ab5e410ddbde43</citedby><cites>FETCH-LOGICAL-c346t-84c8b33a245194a2e268b37b916af019c154eb9518d3b521063ab5e410ddbde43</cites><orcidid>0000-0003-4423-3853 ; 0000000344233853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-020-02171-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-020-02171-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1799933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kramarov, Vladyslav</creatorcontrib><creatorcontrib>Parrikar, Prathmesh Naik</creatorcontrib><creatorcontrib>Mokhtari, Mehdi</creatorcontrib><creatorcontrib>Univ. of Louisiana, Lafayette, LA (United States)</creatorcontrib><title>Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining semi-circular bend test (SCB) and digital image correlation (DIC). Experiments were carried out in different notch orientations with respect to bedding. DIC is used to measure full-field displacements and to visualize and quantify fracture process zone (FPZ). Full-field displacements from DIC are utilized in Williams’ series solution to extract critical stress intensity factor, or fracture toughness. Accuracy of measuring fracture toughness using DIC displacements depends on area of interest (AOI), field of view (FOV), and the number of terms of solution ( N ). A parametric study is conducted, allowing to choose an optimal set of these parameters for evaluation of fracture toughness in rock specimens. It is known that fracture toughness values obtained directly from the SCB test, using conventional maximum load method, are underestimated due to the effect of nonlinear behavior caused by the fracture process zone. FPZ length is considered as an increase in the effective crack length. Irwin’s correction for effective crack length is utilized to measure fracture toughness values obtained directly from the SCB test that account for the fracture process zone. Fracture toughness values measured using DIC method and Irwin’s correction method are in a good match for both Berea Sandstone and Mancos Shale. Both methods show higher fracture toughness for samples in arrester orientation. In addition, the results show that FPZ length in Berea Sandstone is much larger than in Mancos Shale.</description><subject>Bend tests</subject><subject>Civil Engineering</subject><subject>Correlation</subject><subject>Critical components</subject><subject>Digital imaging</subject><subject>Displacement</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Evaluation</subject><subject>Field of view</subject><subject>Fracture toughness</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Heat treating</subject><subject>Hydraulic fracturing</subject><subject>Length</subject><subject>Orientation</subject><subject>Original Paper</subject><subject>Sandstone</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Shales</subject><subject>Stress intensity factors</subject><subject>Toughness</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPQ82r-7WZzlNpqoeChLXoL2Wy63bJNapIV_PamXcGbhzCZmd97DA-AW4weMEL8MSBUIJohgtLDHGf8DIwwoyxjOf04ByPECc1IQckluAphh1Ba8nIE3qdfqutVbJ2FbgNnXunYewNXrm-21oRwnC6VrUN01sD0gcut6gxch9Y28Llt2qg6ON-rxsCJ8950J7NrcLFRXTA3v3UM1rPpavKaLd5e5pOnRaYpK2JWMl1WlCrCciyYIoYUqeeVwIXaICw0zpmpRI7LmlY5waigqsoNw6iuq9owOgZ3g68LsZVBt9HorXbWGh0l5kIIShN0P0AH7z57E6Lcud7bdJckjOKClwLzRJGB0t6F4M1GHny7V_5bYiSPKcshZZlSlqeU5VFEB1FIsG2M_7P-R_UDyZN-Qw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kramarov, Vladyslav</creator><creator>Parrikar, Prathmesh Naik</creator><creator>Mokhtari, Mehdi</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4423-3853</orcidid><orcidid>https://orcid.org/0000000344233853</orcidid></search><sort><creationdate>20200901</creationdate><title>Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation</title><author>Kramarov, Vladyslav ; Parrikar, Prathmesh Naik ; Mokhtari, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-84c8b33a245194a2e268b37b916af019c154eb9518d3b521063ab5e410ddbde43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bend tests</topic><topic>Civil Engineering</topic><topic>Correlation</topic><topic>Critical components</topic><topic>Digital imaging</topic><topic>Displacement</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Evaluation</topic><topic>Field of view</topic><topic>Fracture toughness</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Heat treating</topic><topic>Hydraulic fracturing</topic><topic>Length</topic><topic>Orientation</topic><topic>Original Paper</topic><topic>Sandstone</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Shales</topic><topic>Stress intensity factors</topic><topic>Toughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kramarov, Vladyslav</creatorcontrib><creatorcontrib>Parrikar, Prathmesh Naik</creatorcontrib><creatorcontrib>Mokhtari, Mehdi</creatorcontrib><creatorcontrib>Univ. of Louisiana, Lafayette, LA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kramarov, Vladyslav</au><au>Parrikar, Prathmesh Naik</au><au>Mokhtari, Mehdi</au><aucorp>Univ. of Louisiana, Lafayette, LA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>53</volume><issue>9</issue><spage>4231</spage><epage>4250</epage><pages>4231-4250</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining semi-circular bend test (SCB) and digital image correlation (DIC). Experiments were carried out in different notch orientations with respect to bedding. DIC is used to measure full-field displacements and to visualize and quantify fracture process zone (FPZ). Full-field displacements from DIC are utilized in Williams’ series solution to extract critical stress intensity factor, or fracture toughness. Accuracy of measuring fracture toughness using DIC displacements depends on area of interest (AOI), field of view (FOV), and the number of terms of solution ( N ). A parametric study is conducted, allowing to choose an optimal set of these parameters for evaluation of fracture toughness in rock specimens. It is known that fracture toughness values obtained directly from the SCB test, using conventional maximum load method, are underestimated due to the effect of nonlinear behavior caused by the fracture process zone. FPZ length is considered as an increase in the effective crack length. Irwin’s correction for effective crack length is utilized to measure fracture toughness values obtained directly from the SCB test that account for the fracture process zone. Fracture toughness values measured using DIC method and Irwin’s correction method are in a good match for both Berea Sandstone and Mancos Shale. Both methods show higher fracture toughness for samples in arrester orientation. In addition, the results show that FPZ length in Berea Sandstone is much larger than in Mancos Shale.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-020-02171-7</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4423-3853</orcidid><orcidid>https://orcid.org/0000000344233853</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2020-09, Vol.53 (9), p.4231-4250
issn 0723-2632
1434-453X
language eng
recordid cdi_osti_scitechconnect_1799933
source SpringerLink Journals
subjects Bend tests
Civil Engineering
Correlation
Critical components
Digital imaging
Displacement
Earth and Environmental Science
Earth Sciences
Engineering
Evaluation
Field of view
Fracture toughness
Geology
Geophysics/Geodesy
Heat treating
Hydraulic fracturing
Length
Orientation
Original Paper
Sandstone
Sedimentary rocks
Shale
Shale gas
Shales
Stress intensity factors
Toughness
title Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Fracture%20Toughness%20of%20Sandstone%20and%20Shale%20Using%20Digital%20Image%20Correlation&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Kramarov,%20Vladyslav&rft.aucorp=Univ.%20of%20Louisiana,%20Lafayette,%20LA%20(United%20States)&rft.date=2020-09-01&rft.volume=53&rft.issue=9&rft.spage=4231&rft.epage=4250&rft.pages=4231-4250&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-020-02171-7&rft_dat=%3Cproquest_osti_%3E2431678917%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431678917&rft_id=info:pmid/&rfr_iscdi=true