Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation
Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2020-09, Vol.53 (9), p.4231-4250 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4250 |
---|---|
container_issue | 9 |
container_start_page | 4231 |
container_title | Rock mechanics and rock engineering |
container_volume | 53 |
creator | Kramarov, Vladyslav Parrikar, Prathmesh Naik Mokhtari, Mehdi |
description | Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining semi-circular bend test (SCB) and digital image correlation (DIC). Experiments were carried out in different notch orientations with respect to bedding. DIC is used to measure full-field displacements and to visualize and quantify fracture process zone (FPZ). Full-field displacements from DIC are utilized in Williams’ series solution to extract critical stress intensity factor, or fracture toughness. Accuracy of measuring fracture toughness using DIC displacements depends on area of interest (AOI), field of view (FOV), and the number of terms of solution (
N
). A parametric study is conducted, allowing to choose an optimal set of these parameters for evaluation of fracture toughness in rock specimens. It is known that fracture toughness values obtained directly from the SCB test, using conventional maximum load method, are underestimated due to the effect of nonlinear behavior caused by the fracture process zone. FPZ length is considered as an increase in the effective crack length. Irwin’s correction for effective crack length is utilized to measure fracture toughness values obtained directly from the SCB test that account for the fracture process zone. Fracture toughness values measured using DIC method and Irwin’s correction method are in a good match for both Berea Sandstone and Mancos Shale. Both methods show higher fracture toughness for samples in arrester orientation. In addition, the results show that FPZ length in Berea Sandstone is much larger than in Mancos Shale. |
doi_str_mv | 10.1007/s00603-020-02171-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1799933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431678917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-84c8b33a245194a2e268b37b916af019c154eb9518d3b521063ab5e410ddbde43</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPQ82r-7WZzlNpqoeChLXoL2Wy63bJNapIV_PamXcGbhzCZmd97DA-AW4weMEL8MSBUIJohgtLDHGf8DIwwoyxjOf04ByPECc1IQckluAphh1Ba8nIE3qdfqutVbJ2FbgNnXunYewNXrm-21oRwnC6VrUN01sD0gcut6gxch9Y28Llt2qg6ON-rxsCJ8950J7NrcLFRXTA3v3UM1rPpavKaLd5e5pOnRaYpK2JWMl1WlCrCciyYIoYUqeeVwIXaICw0zpmpRI7LmlY5waigqsoNw6iuq9owOgZ3g68LsZVBt9HorXbWGh0l5kIIShN0P0AH7z57E6Lcud7bdJckjOKClwLzRJGB0t6F4M1GHny7V_5bYiSPKcshZZlSlqeU5VFEB1FIsG2M_7P-R_UDyZN-Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431678917</pqid></control><display><type>article</type><title>Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation</title><source>SpringerLink Journals</source><creator>Kramarov, Vladyslav ; Parrikar, Prathmesh Naik ; Mokhtari, Mehdi</creator><creatorcontrib>Kramarov, Vladyslav ; Parrikar, Prathmesh Naik ; Mokhtari, Mehdi ; Univ. of Louisiana, Lafayette, LA (United States)</creatorcontrib><description>Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining semi-circular bend test (SCB) and digital image correlation (DIC). Experiments were carried out in different notch orientations with respect to bedding. DIC is used to measure full-field displacements and to visualize and quantify fracture process zone (FPZ). Full-field displacements from DIC are utilized in Williams’ series solution to extract critical stress intensity factor, or fracture toughness. Accuracy of measuring fracture toughness using DIC displacements depends on area of interest (AOI), field of view (FOV), and the number of terms of solution (
N
). A parametric study is conducted, allowing to choose an optimal set of these parameters for evaluation of fracture toughness in rock specimens. It is known that fracture toughness values obtained directly from the SCB test, using conventional maximum load method, are underestimated due to the effect of nonlinear behavior caused by the fracture process zone. FPZ length is considered as an increase in the effective crack length. Irwin’s correction for effective crack length is utilized to measure fracture toughness values obtained directly from the SCB test that account for the fracture process zone. Fracture toughness values measured using DIC method and Irwin’s correction method are in a good match for both Berea Sandstone and Mancos Shale. Both methods show higher fracture toughness for samples in arrester orientation. In addition, the results show that FPZ length in Berea Sandstone is much larger than in Mancos Shale.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-020-02171-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Bend tests ; Civil Engineering ; Correlation ; Critical components ; Digital imaging ; Displacement ; Earth and Environmental Science ; Earth Sciences ; Engineering ; Evaluation ; Field of view ; Fracture toughness ; Geology ; Geophysics/Geodesy ; Heat treating ; Hydraulic fracturing ; Length ; Orientation ; Original Paper ; Sandstone ; Sedimentary rocks ; Shale ; Shale gas ; Shales ; Stress intensity factors ; Toughness</subject><ispartof>Rock mechanics and rock engineering, 2020-09, Vol.53 (9), p.4231-4250</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-84c8b33a245194a2e268b37b916af019c154eb9518d3b521063ab5e410ddbde43</citedby><cites>FETCH-LOGICAL-c346t-84c8b33a245194a2e268b37b916af019c154eb9518d3b521063ab5e410ddbde43</cites><orcidid>0000-0003-4423-3853 ; 0000000344233853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-020-02171-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-020-02171-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1799933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kramarov, Vladyslav</creatorcontrib><creatorcontrib>Parrikar, Prathmesh Naik</creatorcontrib><creatorcontrib>Mokhtari, Mehdi</creatorcontrib><creatorcontrib>Univ. of Louisiana, Lafayette, LA (United States)</creatorcontrib><title>Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining semi-circular bend test (SCB) and digital image correlation (DIC). Experiments were carried out in different notch orientations with respect to bedding. DIC is used to measure full-field displacements and to visualize and quantify fracture process zone (FPZ). Full-field displacements from DIC are utilized in Williams’ series solution to extract critical stress intensity factor, or fracture toughness. Accuracy of measuring fracture toughness using DIC displacements depends on area of interest (AOI), field of view (FOV), and the number of terms of solution (
N
). A parametric study is conducted, allowing to choose an optimal set of these parameters for evaluation of fracture toughness in rock specimens. It is known that fracture toughness values obtained directly from the SCB test, using conventional maximum load method, are underestimated due to the effect of nonlinear behavior caused by the fracture process zone. FPZ length is considered as an increase in the effective crack length. Irwin’s correction for effective crack length is utilized to measure fracture toughness values obtained directly from the SCB test that account for the fracture process zone. Fracture toughness values measured using DIC method and Irwin’s correction method are in a good match for both Berea Sandstone and Mancos Shale. Both methods show higher fracture toughness for samples in arrester orientation. In addition, the results show that FPZ length in Berea Sandstone is much larger than in Mancos Shale.</description><subject>Bend tests</subject><subject>Civil Engineering</subject><subject>Correlation</subject><subject>Critical components</subject><subject>Digital imaging</subject><subject>Displacement</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Evaluation</subject><subject>Field of view</subject><subject>Fracture toughness</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Heat treating</subject><subject>Hydraulic fracturing</subject><subject>Length</subject><subject>Orientation</subject><subject>Original Paper</subject><subject>Sandstone</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Shales</subject><subject>Stress intensity factors</subject><subject>Toughness</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPQ82r-7WZzlNpqoeChLXoL2Wy63bJNapIV_PamXcGbhzCZmd97DA-AW4weMEL8MSBUIJohgtLDHGf8DIwwoyxjOf04ByPECc1IQckluAphh1Ba8nIE3qdfqutVbJ2FbgNnXunYewNXrm-21oRwnC6VrUN01sD0gcut6gxch9Y28Llt2qg6ON-rxsCJ8950J7NrcLFRXTA3v3UM1rPpavKaLd5e5pOnRaYpK2JWMl1WlCrCciyYIoYUqeeVwIXaICw0zpmpRI7LmlY5waigqsoNw6iuq9owOgZ3g68LsZVBt9HorXbWGh0l5kIIShN0P0AH7z57E6Lcud7bdJckjOKClwLzRJGB0t6F4M1GHny7V_5bYiSPKcshZZlSlqeU5VFEB1FIsG2M_7P-R_UDyZN-Qw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kramarov, Vladyslav</creator><creator>Parrikar, Prathmesh Naik</creator><creator>Mokhtari, Mehdi</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4423-3853</orcidid><orcidid>https://orcid.org/0000000344233853</orcidid></search><sort><creationdate>20200901</creationdate><title>Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation</title><author>Kramarov, Vladyslav ; Parrikar, Prathmesh Naik ; Mokhtari, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-84c8b33a245194a2e268b37b916af019c154eb9518d3b521063ab5e410ddbde43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bend tests</topic><topic>Civil Engineering</topic><topic>Correlation</topic><topic>Critical components</topic><topic>Digital imaging</topic><topic>Displacement</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Evaluation</topic><topic>Field of view</topic><topic>Fracture toughness</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Heat treating</topic><topic>Hydraulic fracturing</topic><topic>Length</topic><topic>Orientation</topic><topic>Original Paper</topic><topic>Sandstone</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Shales</topic><topic>Stress intensity factors</topic><topic>Toughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kramarov, Vladyslav</creatorcontrib><creatorcontrib>Parrikar, Prathmesh Naik</creatorcontrib><creatorcontrib>Mokhtari, Mehdi</creatorcontrib><creatorcontrib>Univ. of Louisiana, Lafayette, LA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kramarov, Vladyslav</au><au>Parrikar, Prathmesh Naik</au><au>Mokhtari, Mehdi</au><aucorp>Univ. of Louisiana, Lafayette, LA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>53</volume><issue>9</issue><spage>4231</spage><epage>4250</epage><pages>4231-4250</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Success of a hydraulic fracturing operation depends on the height and width of the induced fractures. One of the critical components controlling fracture size is fracture toughness of the formation. In this work, mode I fracture toughness of Berea Sandstone and Mancos Shale is measured by combining semi-circular bend test (SCB) and digital image correlation (DIC). Experiments were carried out in different notch orientations with respect to bedding. DIC is used to measure full-field displacements and to visualize and quantify fracture process zone (FPZ). Full-field displacements from DIC are utilized in Williams’ series solution to extract critical stress intensity factor, or fracture toughness. Accuracy of measuring fracture toughness using DIC displacements depends on area of interest (AOI), field of view (FOV), and the number of terms of solution (
N
). A parametric study is conducted, allowing to choose an optimal set of these parameters for evaluation of fracture toughness in rock specimens. It is known that fracture toughness values obtained directly from the SCB test, using conventional maximum load method, are underestimated due to the effect of nonlinear behavior caused by the fracture process zone. FPZ length is considered as an increase in the effective crack length. Irwin’s correction for effective crack length is utilized to measure fracture toughness values obtained directly from the SCB test that account for the fracture process zone. Fracture toughness values measured using DIC method and Irwin’s correction method are in a good match for both Berea Sandstone and Mancos Shale. Both methods show higher fracture toughness for samples in arrester orientation. In addition, the results show that FPZ length in Berea Sandstone is much larger than in Mancos Shale.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-020-02171-7</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4423-3853</orcidid><orcidid>https://orcid.org/0000000344233853</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2020-09, Vol.53 (9), p.4231-4250 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_osti_scitechconnect_1799933 |
source | SpringerLink Journals |
subjects | Bend tests Civil Engineering Correlation Critical components Digital imaging Displacement Earth and Environmental Science Earth Sciences Engineering Evaluation Field of view Fracture toughness Geology Geophysics/Geodesy Heat treating Hydraulic fracturing Length Orientation Original Paper Sandstone Sedimentary rocks Shale Shale gas Shales Stress intensity factors Toughness |
title | Evaluation of Fracture Toughness of Sandstone and Shale Using Digital Image Correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Fracture%20Toughness%20of%20Sandstone%20and%20Shale%20Using%20Digital%20Image%20Correlation&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Kramarov,%20Vladyslav&rft.aucorp=Univ.%20of%20Louisiana,%20Lafayette,%20LA%20(United%20States)&rft.date=2020-09-01&rft.volume=53&rft.issue=9&rft.spage=4231&rft.epage=4250&rft.pages=4231-4250&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-020-02171-7&rft_dat=%3Cproquest_osti_%3E2431678917%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431678917&rft_id=info:pmid/&rfr_iscdi=true |