Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis
Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synt...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2020-02, Vol.10 (3), p.1993-2008 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2008 |
---|---|
container_issue | 3 |
container_start_page | 1993 |
container_title | ACS catalysis |
container_volume | 10 |
creator | San Roman, Daniel Krishnamurthy, Dilip Garg, Raghav Hafiz, Hasnain Lamparski, Michael Nuhfer, Noel T Meunier, Vincent Viswanathan, Venkatasubramanian Cohen-Karni, Tzahi |
description | Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synthesis, the identification and fabrication of precise active sites remain a challenge. Here, we report a graphene edge-based electrocatalyst for two-electron ORRnanowire-templated three-dimensional fuzzy graphene (NT-3DFG). NT-3DFG exhibits notable efficiency [onset potential of 0.79 ± 0.01 V vs reversible hydrogen electrode (RHE)], high selectivity (94 ± 2% H2O2), and tunable ORR activity as a function of graphene edge site density. Using spectroscopic surface characterization and density functional theory calculations, we find that NT-3DFG edge sites are readily functionalized by carbonyl (CO) and hydroxyl (C–OH) groups under alkaline ORR conditions. Our calculations indicate that multiple functionalized configurations at both armchair and zigzag edges may achieve a local coordination environment that allows selective, two-electron ORR. We derive a generalized geometric descriptor based on the local coordination environment that provides activity predictions of graphene surface sites within ∼0.1 V of computed values. We combine synthesis, spectroscopy, and simulations to improve active site characterization and accelerate carbon-based electrocatalyst discovery. |
doi_str_mv | 10.1021/acscatal.9b03919 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1799423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a988812992</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-9a8b82da7319d2858f241fd5ec4a4b5e6960cd3f2548c2673b6b5d91596fb9ee3</originalsourceid><addsrcrecordid>eNp1UF1PwjAUXYwmEuTdx8YnTRy267qtjwYmmJBgBJ-XrrsbJaMl7VD5Bf5ti2Dii_flfpxzbk5OEFwTPCQ4Ig9COik60Q55iSkn_CzoRYSxkMWUnf-ZL4OBc2vsK2ZJluJe8JXrRmkAq3SDlisLEI7VBrRTRosW3dLxHZrvutDU4UsrNKCJFdsV-CGvGkAL1YFDtbFoqppVu0cLaEF26h3Q8sOE-WGxRqP5574BjV6h2nnUH07Ij-u9U-4quKhF62Bw6v3g7SlfjqbhbD55Hj3OQkFx2oVcZGUWVSKlhFdRxrI6ikldMZCxiEsGCU-wrGgdsTiTUZLSMilZxQnjSV1yANoPbo5_jetU4aT3L1fSaO3tFCTlPI6oJ-EjSVrjnIW62Fq1EXZfEFwcAi9-Ay9OgXvJ_VHikWJtdtan5_6nfwMO04W0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis</title><source>American Chemical Society Journals</source><creator>San Roman, Daniel ; Krishnamurthy, Dilip ; Garg, Raghav ; Hafiz, Hasnain ; Lamparski, Michael ; Nuhfer, Noel T ; Meunier, Vincent ; Viswanathan, Venkatasubramanian ; Cohen-Karni, Tzahi</creator><creatorcontrib>San Roman, Daniel ; Krishnamurthy, Dilip ; Garg, Raghav ; Hafiz, Hasnain ; Lamparski, Michael ; Nuhfer, Noel T ; Meunier, Vincent ; Viswanathan, Venkatasubramanian ; Cohen-Karni, Tzahi ; Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><description>Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synthesis, the identification and fabrication of precise active sites remain a challenge. Here, we report a graphene edge-based electrocatalyst for two-electron ORRnanowire-templated three-dimensional fuzzy graphene (NT-3DFG). NT-3DFG exhibits notable efficiency [onset potential of 0.79 ± 0.01 V vs reversible hydrogen electrode (RHE)], high selectivity (94 ± 2% H2O2), and tunable ORR activity as a function of graphene edge site density. Using spectroscopic surface characterization and density functional theory calculations, we find that NT-3DFG edge sites are readily functionalized by carbonyl (CO) and hydroxyl (C–OH) groups under alkaline ORR conditions. Our calculations indicate that multiple functionalized configurations at both armchair and zigzag edges may achieve a local coordination environment that allows selective, two-electron ORR. We derive a generalized geometric descriptor based on the local coordination environment that provides activity predictions of graphene surface sites within ∼0.1 V of computed values. We combine synthesis, spectroscopy, and simulations to improve active site characterization and accelerate carbon-based electrocatalyst discovery.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.9b03919</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry</subject><ispartof>ACS catalysis, 2020-02, Vol.10 (3), p.1993-2008</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-9a8b82da7319d2858f241fd5ec4a4b5e6960cd3f2548c2673b6b5d91596fb9ee3</citedby><cites>FETCH-LOGICAL-a307t-9a8b82da7319d2858f241fd5ec4a4b5e6960cd3f2548c2673b6b5d91596fb9ee3</cites><orcidid>0000-0001-8231-5492 ; 0000-0002-0202-794X ; 0000-0002-7013-179X ; 0000-0003-1060-5495 ; 0000-0001-5742-1007 ; 0000-0002-3501-6892 ; 0000000235016892 ; 0000000310605495 ; 000000027013179X ; 0000000157421007 ; 0000000182315492 ; 000000020202794X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.9b03919$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.9b03919$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1799423$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>San Roman, Daniel</creatorcontrib><creatorcontrib>Krishnamurthy, Dilip</creatorcontrib><creatorcontrib>Garg, Raghav</creatorcontrib><creatorcontrib>Hafiz, Hasnain</creatorcontrib><creatorcontrib>Lamparski, Michael</creatorcontrib><creatorcontrib>Nuhfer, Noel T</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Viswanathan, Venkatasubramanian</creatorcontrib><creatorcontrib>Cohen-Karni, Tzahi</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><title>Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synthesis, the identification and fabrication of precise active sites remain a challenge. Here, we report a graphene edge-based electrocatalyst for two-electron ORRnanowire-templated three-dimensional fuzzy graphene (NT-3DFG). NT-3DFG exhibits notable efficiency [onset potential of 0.79 ± 0.01 V vs reversible hydrogen electrode (RHE)], high selectivity (94 ± 2% H2O2), and tunable ORR activity as a function of graphene edge site density. Using spectroscopic surface characterization and density functional theory calculations, we find that NT-3DFG edge sites are readily functionalized by carbonyl (CO) and hydroxyl (C–OH) groups under alkaline ORR conditions. Our calculations indicate that multiple functionalized configurations at both armchair and zigzag edges may achieve a local coordination environment that allows selective, two-electron ORR. We derive a generalized geometric descriptor based on the local coordination environment that provides activity predictions of graphene surface sites within ∼0.1 V of computed values. We combine synthesis, spectroscopy, and simulations to improve active site characterization and accelerate carbon-based electrocatalyst discovery.</description><subject>Chemistry</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UF1PwjAUXYwmEuTdx8YnTRy267qtjwYmmJBgBJ-XrrsbJaMl7VD5Bf5ti2Dii_flfpxzbk5OEFwTPCQ4Ig9COik60Q55iSkn_CzoRYSxkMWUnf-ZL4OBc2vsK2ZJluJe8JXrRmkAq3SDlisLEI7VBrRTRosW3dLxHZrvutDU4UsrNKCJFdsV-CGvGkAL1YFDtbFoqppVu0cLaEF26h3Q8sOE-WGxRqP5574BjV6h2nnUH07Ij-u9U-4quKhF62Bw6v3g7SlfjqbhbD55Hj3OQkFx2oVcZGUWVSKlhFdRxrI6ikldMZCxiEsGCU-wrGgdsTiTUZLSMilZxQnjSV1yANoPbo5_jetU4aT3L1fSaO3tFCTlPI6oJ-EjSVrjnIW62Fq1EXZfEFwcAi9-Ay9OgXvJ_VHikWJtdtan5_6nfwMO04W0</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>San Roman, Daniel</creator><creator>Krishnamurthy, Dilip</creator><creator>Garg, Raghav</creator><creator>Hafiz, Hasnain</creator><creator>Lamparski, Michael</creator><creator>Nuhfer, Noel T</creator><creator>Meunier, Vincent</creator><creator>Viswanathan, Venkatasubramanian</creator><creator>Cohen-Karni, Tzahi</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8231-5492</orcidid><orcidid>https://orcid.org/0000-0002-0202-794X</orcidid><orcidid>https://orcid.org/0000-0002-7013-179X</orcidid><orcidid>https://orcid.org/0000-0003-1060-5495</orcidid><orcidid>https://orcid.org/0000-0001-5742-1007</orcidid><orcidid>https://orcid.org/0000-0002-3501-6892</orcidid><orcidid>https://orcid.org/0000000235016892</orcidid><orcidid>https://orcid.org/0000000310605495</orcidid><orcidid>https://orcid.org/000000027013179X</orcidid><orcidid>https://orcid.org/0000000157421007</orcidid><orcidid>https://orcid.org/0000000182315492</orcidid><orcidid>https://orcid.org/000000020202794X</orcidid></search><sort><creationdate>20200207</creationdate><title>Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis</title><author>San Roman, Daniel ; Krishnamurthy, Dilip ; Garg, Raghav ; Hafiz, Hasnain ; Lamparski, Michael ; Nuhfer, Noel T ; Meunier, Vincent ; Viswanathan, Venkatasubramanian ; Cohen-Karni, Tzahi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-9a8b82da7319d2858f241fd5ec4a4b5e6960cd3f2548c2673b6b5d91596fb9ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>San Roman, Daniel</creatorcontrib><creatorcontrib>Krishnamurthy, Dilip</creatorcontrib><creatorcontrib>Garg, Raghav</creatorcontrib><creatorcontrib>Hafiz, Hasnain</creatorcontrib><creatorcontrib>Lamparski, Michael</creatorcontrib><creatorcontrib>Nuhfer, Noel T</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Viswanathan, Venkatasubramanian</creatorcontrib><creatorcontrib>Cohen-Karni, Tzahi</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>San Roman, Daniel</au><au>Krishnamurthy, Dilip</au><au>Garg, Raghav</au><au>Hafiz, Hasnain</au><au>Lamparski, Michael</au><au>Nuhfer, Noel T</au><au>Meunier, Vincent</au><au>Viswanathan, Venkatasubramanian</au><au>Cohen-Karni, Tzahi</au><aucorp>Carnegie Mellon Univ., Pittsburgh, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-02-07</date><risdate>2020</risdate><volume>10</volume><issue>3</issue><spage>1993</spage><epage>2008</epage><pages>1993-2008</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synthesis, the identification and fabrication of precise active sites remain a challenge. Here, we report a graphene edge-based electrocatalyst for two-electron ORRnanowire-templated three-dimensional fuzzy graphene (NT-3DFG). NT-3DFG exhibits notable efficiency [onset potential of 0.79 ± 0.01 V vs reversible hydrogen electrode (RHE)], high selectivity (94 ± 2% H2O2), and tunable ORR activity as a function of graphene edge site density. Using spectroscopic surface characterization and density functional theory calculations, we find that NT-3DFG edge sites are readily functionalized by carbonyl (CO) and hydroxyl (C–OH) groups under alkaline ORR conditions. Our calculations indicate that multiple functionalized configurations at both armchair and zigzag edges may achieve a local coordination environment that allows selective, two-electron ORR. We derive a generalized geometric descriptor based on the local coordination environment that provides activity predictions of graphene surface sites within ∼0.1 V of computed values. We combine synthesis, spectroscopy, and simulations to improve active site characterization and accelerate carbon-based electrocatalyst discovery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.9b03919</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8231-5492</orcidid><orcidid>https://orcid.org/0000-0002-0202-794X</orcidid><orcidid>https://orcid.org/0000-0002-7013-179X</orcidid><orcidid>https://orcid.org/0000-0003-1060-5495</orcidid><orcidid>https://orcid.org/0000-0001-5742-1007</orcidid><orcidid>https://orcid.org/0000-0002-3501-6892</orcidid><orcidid>https://orcid.org/0000000235016892</orcidid><orcidid>https://orcid.org/0000000310605495</orcidid><orcidid>https://orcid.org/000000027013179X</orcidid><orcidid>https://orcid.org/0000000157421007</orcidid><orcidid>https://orcid.org/0000000182315492</orcidid><orcidid>https://orcid.org/000000020202794X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2020-02, Vol.10 (3), p.1993-2008 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_osti_scitechconnect_1799423 |
source | American Chemical Society Journals |
subjects | Chemistry |
title | Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Three-Dimensional%20(3D)%20Out-of-Plane%20Graphene%20Edge%20Sites%20for%20Highly%20Selective%20Two-Electron%20Oxygen%20Reduction%20Electrocatalysis&rft.jtitle=ACS%20catalysis&rft.au=San%20Roman,%20Daniel&rft.aucorp=Carnegie%20Mellon%20Univ.,%20Pittsburgh,%20PA%20(United%20States)&rft.date=2020-02-07&rft.volume=10&rft.issue=3&rft.spage=1993&rft.epage=2008&rft.pages=1993-2008&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.9b03919&rft_dat=%3Cacs_osti_%3Ea988812992%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |