Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis

Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-02, Vol.10 (3), p.1993-2008
Hauptverfasser: San Roman, Daniel, Krishnamurthy, Dilip, Garg, Raghav, Hafiz, Hasnain, Lamparski, Michael, Nuhfer, Noel T, Meunier, Vincent, Viswanathan, Venkatasubramanian, Cohen-Karni, Tzahi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2008
container_issue 3
container_start_page 1993
container_title ACS catalysis
container_volume 10
creator San Roman, Daniel
Krishnamurthy, Dilip
Garg, Raghav
Hafiz, Hasnain
Lamparski, Michael
Nuhfer, Noel T
Meunier, Vincent
Viswanathan, Venkatasubramanian
Cohen-Karni, Tzahi
description Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synthesis, the identification and fabrication of precise active sites remain a challenge. Here, we report a graphene edge-based electrocatalyst for two-electron ORRnanowire-templated three-dimensional fuzzy graphene (NT-3DFG). NT-3DFG exhibits notable efficiency [onset potential of 0.79 ± 0.01 V vs reversible hydrogen electrode (RHE)], high selectivity (94 ± 2% H2O2), and tunable ORR activity as a function of graphene edge site density. Using spectroscopic surface characterization and density functional theory calculations, we find that NT-3DFG edge sites are readily functionalized by carbonyl (CO) and hydroxyl (C–OH) groups under alkaline ORR conditions. Our calculations indicate that multiple functionalized configurations at both armchair and zigzag edges may achieve a local coordination environment that allows selective, two-electron ORR. We derive a generalized geometric descriptor based on the local coordination environment that provides activity predictions of graphene surface sites within ∼0.1 V of computed values. We combine synthesis, spectroscopy, and simulations to improve active site characterization and accelerate carbon-based electrocatalyst discovery.
doi_str_mv 10.1021/acscatal.9b03919
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1799423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a988812992</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-9a8b82da7319d2858f241fd5ec4a4b5e6960cd3f2548c2673b6b5d91596fb9ee3</originalsourceid><addsrcrecordid>eNp1UF1PwjAUXYwmEuTdx8YnTRy267qtjwYmmJBgBJ-XrrsbJaMl7VD5Bf5ti2Dii_flfpxzbk5OEFwTPCQ4Ig9COik60Q55iSkn_CzoRYSxkMWUnf-ZL4OBc2vsK2ZJluJe8JXrRmkAq3SDlisLEI7VBrRTRosW3dLxHZrvutDU4UsrNKCJFdsV-CGvGkAL1YFDtbFoqppVu0cLaEF26h3Q8sOE-WGxRqP5574BjV6h2nnUH07Ij-u9U-4quKhF62Bw6v3g7SlfjqbhbD55Hj3OQkFx2oVcZGUWVSKlhFdRxrI6ikldMZCxiEsGCU-wrGgdsTiTUZLSMilZxQnjSV1yANoPbo5_jetU4aT3L1fSaO3tFCTlPI6oJ-EjSVrjnIW62Fq1EXZfEFwcAi9-Ay9OgXvJ_VHikWJtdtan5_6nfwMO04W0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis</title><source>American Chemical Society Journals</source><creator>San Roman, Daniel ; Krishnamurthy, Dilip ; Garg, Raghav ; Hafiz, Hasnain ; Lamparski, Michael ; Nuhfer, Noel T ; Meunier, Vincent ; Viswanathan, Venkatasubramanian ; Cohen-Karni, Tzahi</creator><creatorcontrib>San Roman, Daniel ; Krishnamurthy, Dilip ; Garg, Raghav ; Hafiz, Hasnain ; Lamparski, Michael ; Nuhfer, Noel T ; Meunier, Vincent ; Viswanathan, Venkatasubramanian ; Cohen-Karni, Tzahi ; Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><description>Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synthesis, the identification and fabrication of precise active sites remain a challenge. Here, we report a graphene edge-based electrocatalyst for two-electron ORRnanowire-templated three-dimensional fuzzy graphene (NT-3DFG). NT-3DFG exhibits notable efficiency [onset potential of 0.79 ± 0.01 V vs reversible hydrogen electrode (RHE)], high selectivity (94 ± 2% H2O2), and tunable ORR activity as a function of graphene edge site density. Using spectroscopic surface characterization and density functional theory calculations, we find that NT-3DFG edge sites are readily functionalized by carbonyl (CO) and hydroxyl (C–OH) groups under alkaline ORR conditions. Our calculations indicate that multiple functionalized configurations at both armchair and zigzag edges may achieve a local coordination environment that allows selective, two-electron ORR. We derive a generalized geometric descriptor based on the local coordination environment that provides activity predictions of graphene surface sites within ∼0.1 V of computed values. We combine synthesis, spectroscopy, and simulations to improve active site characterization and accelerate carbon-based electrocatalyst discovery.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.9b03919</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry</subject><ispartof>ACS catalysis, 2020-02, Vol.10 (3), p.1993-2008</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-9a8b82da7319d2858f241fd5ec4a4b5e6960cd3f2548c2673b6b5d91596fb9ee3</citedby><cites>FETCH-LOGICAL-a307t-9a8b82da7319d2858f241fd5ec4a4b5e6960cd3f2548c2673b6b5d91596fb9ee3</cites><orcidid>0000-0001-8231-5492 ; 0000-0002-0202-794X ; 0000-0002-7013-179X ; 0000-0003-1060-5495 ; 0000-0001-5742-1007 ; 0000-0002-3501-6892 ; 0000000235016892 ; 0000000310605495 ; 000000027013179X ; 0000000157421007 ; 0000000182315492 ; 000000020202794X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.9b03919$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.9b03919$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1799423$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>San Roman, Daniel</creatorcontrib><creatorcontrib>Krishnamurthy, Dilip</creatorcontrib><creatorcontrib>Garg, Raghav</creatorcontrib><creatorcontrib>Hafiz, Hasnain</creatorcontrib><creatorcontrib>Lamparski, Michael</creatorcontrib><creatorcontrib>Nuhfer, Noel T</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Viswanathan, Venkatasubramanian</creatorcontrib><creatorcontrib>Cohen-Karni, Tzahi</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><title>Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synthesis, the identification and fabrication of precise active sites remain a challenge. Here, we report a graphene edge-based electrocatalyst for two-electron ORRnanowire-templated three-dimensional fuzzy graphene (NT-3DFG). NT-3DFG exhibits notable efficiency [onset potential of 0.79 ± 0.01 V vs reversible hydrogen electrode (RHE)], high selectivity (94 ± 2% H2O2), and tunable ORR activity as a function of graphene edge site density. Using spectroscopic surface characterization and density functional theory calculations, we find that NT-3DFG edge sites are readily functionalized by carbonyl (CO) and hydroxyl (C–OH) groups under alkaline ORR conditions. Our calculations indicate that multiple functionalized configurations at both armchair and zigzag edges may achieve a local coordination environment that allows selective, two-electron ORR. We derive a generalized geometric descriptor based on the local coordination environment that provides activity predictions of graphene surface sites within ∼0.1 V of computed values. We combine synthesis, spectroscopy, and simulations to improve active site characterization and accelerate carbon-based electrocatalyst discovery.</description><subject>Chemistry</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UF1PwjAUXYwmEuTdx8YnTRy267qtjwYmmJBgBJ-XrrsbJaMl7VD5Bf5ti2Dii_flfpxzbk5OEFwTPCQ4Ig9COik60Q55iSkn_CzoRYSxkMWUnf-ZL4OBc2vsK2ZJluJe8JXrRmkAq3SDlisLEI7VBrRTRosW3dLxHZrvutDU4UsrNKCJFdsV-CGvGkAL1YFDtbFoqppVu0cLaEF26h3Q8sOE-WGxRqP5574BjV6h2nnUH07Ij-u9U-4quKhF62Bw6v3g7SlfjqbhbD55Hj3OQkFx2oVcZGUWVSKlhFdRxrI6ikldMZCxiEsGCU-wrGgdsTiTUZLSMilZxQnjSV1yANoPbo5_jetU4aT3L1fSaO3tFCTlPI6oJ-EjSVrjnIW62Fq1EXZfEFwcAi9-Ay9OgXvJ_VHikWJtdtan5_6nfwMO04W0</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>San Roman, Daniel</creator><creator>Krishnamurthy, Dilip</creator><creator>Garg, Raghav</creator><creator>Hafiz, Hasnain</creator><creator>Lamparski, Michael</creator><creator>Nuhfer, Noel T</creator><creator>Meunier, Vincent</creator><creator>Viswanathan, Venkatasubramanian</creator><creator>Cohen-Karni, Tzahi</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8231-5492</orcidid><orcidid>https://orcid.org/0000-0002-0202-794X</orcidid><orcidid>https://orcid.org/0000-0002-7013-179X</orcidid><orcidid>https://orcid.org/0000-0003-1060-5495</orcidid><orcidid>https://orcid.org/0000-0001-5742-1007</orcidid><orcidid>https://orcid.org/0000-0002-3501-6892</orcidid><orcidid>https://orcid.org/0000000235016892</orcidid><orcidid>https://orcid.org/0000000310605495</orcidid><orcidid>https://orcid.org/000000027013179X</orcidid><orcidid>https://orcid.org/0000000157421007</orcidid><orcidid>https://orcid.org/0000000182315492</orcidid><orcidid>https://orcid.org/000000020202794X</orcidid></search><sort><creationdate>20200207</creationdate><title>Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis</title><author>San Roman, Daniel ; Krishnamurthy, Dilip ; Garg, Raghav ; Hafiz, Hasnain ; Lamparski, Michael ; Nuhfer, Noel T ; Meunier, Vincent ; Viswanathan, Venkatasubramanian ; Cohen-Karni, Tzahi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-9a8b82da7319d2858f241fd5ec4a4b5e6960cd3f2548c2673b6b5d91596fb9ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>San Roman, Daniel</creatorcontrib><creatorcontrib>Krishnamurthy, Dilip</creatorcontrib><creatorcontrib>Garg, Raghav</creatorcontrib><creatorcontrib>Hafiz, Hasnain</creatorcontrib><creatorcontrib>Lamparski, Michael</creatorcontrib><creatorcontrib>Nuhfer, Noel T</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Viswanathan, Venkatasubramanian</creatorcontrib><creatorcontrib>Cohen-Karni, Tzahi</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>San Roman, Daniel</au><au>Krishnamurthy, Dilip</au><au>Garg, Raghav</au><au>Hafiz, Hasnain</au><au>Lamparski, Michael</au><au>Nuhfer, Noel T</au><au>Meunier, Vincent</au><au>Viswanathan, Venkatasubramanian</au><au>Cohen-Karni, Tzahi</au><aucorp>Carnegie Mellon Univ., Pittsburgh, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-02-07</date><risdate>2020</risdate><volume>10</volume><issue>3</issue><spage>1993</spage><epage>2008</epage><pages>1993-2008</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synthesis, the identification and fabrication of precise active sites remain a challenge. Here, we report a graphene edge-based electrocatalyst for two-electron ORRnanowire-templated three-dimensional fuzzy graphene (NT-3DFG). NT-3DFG exhibits notable efficiency [onset potential of 0.79 ± 0.01 V vs reversible hydrogen electrode (RHE)], high selectivity (94 ± 2% H2O2), and tunable ORR activity as a function of graphene edge site density. Using spectroscopic surface characterization and density functional theory calculations, we find that NT-3DFG edge sites are readily functionalized by carbonyl (CO) and hydroxyl (C–OH) groups under alkaline ORR conditions. Our calculations indicate that multiple functionalized configurations at both armchair and zigzag edges may achieve a local coordination environment that allows selective, two-electron ORR. We derive a generalized geometric descriptor based on the local coordination environment that provides activity predictions of graphene surface sites within ∼0.1 V of computed values. We combine synthesis, spectroscopy, and simulations to improve active site characterization and accelerate carbon-based electrocatalyst discovery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.9b03919</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8231-5492</orcidid><orcidid>https://orcid.org/0000-0002-0202-794X</orcidid><orcidid>https://orcid.org/0000-0002-7013-179X</orcidid><orcidid>https://orcid.org/0000-0003-1060-5495</orcidid><orcidid>https://orcid.org/0000-0001-5742-1007</orcidid><orcidid>https://orcid.org/0000-0002-3501-6892</orcidid><orcidid>https://orcid.org/0000000235016892</orcidid><orcidid>https://orcid.org/0000000310605495</orcidid><orcidid>https://orcid.org/000000027013179X</orcidid><orcidid>https://orcid.org/0000000157421007</orcidid><orcidid>https://orcid.org/0000000182315492</orcidid><orcidid>https://orcid.org/000000020202794X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-02, Vol.10 (3), p.1993-2008
issn 2155-5435
2155-5435
language eng
recordid cdi_osti_scitechconnect_1799423
source American Chemical Society Journals
subjects Chemistry
title Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Three-Dimensional%20(3D)%20Out-of-Plane%20Graphene%20Edge%20Sites%20for%20Highly%20Selective%20Two-Electron%20Oxygen%20Reduction%20Electrocatalysis&rft.jtitle=ACS%20catalysis&rft.au=San%20Roman,%20Daniel&rft.aucorp=Carnegie%20Mellon%20Univ.,%20Pittsburgh,%20PA%20(United%20States)&rft.date=2020-02-07&rft.volume=10&rft.issue=3&rft.spage=1993&rft.epage=2008&rft.pages=1993-2008&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.9b03919&rft_dat=%3Cacs_osti_%3Ea988812992%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true