A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol

[Display omitted] •Adding 0.1 mol% H2O in the feed increases CH3OH formation rate by 20% over In2O3/ZrO2.•H2O-induced oxygen vacancies improve CO2 adsorption capacity.•DFT reveals the correlation of InOOH and CH3OH formation with H2O addition.•Excess H2O leads to aggregation of catalyst and negative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 2020-03, Vol.383 (C), p.283-296
Hauptverfasser: Jiang, Xiao, Nie, Xiaowa, Gong, Yutao, Moran, Colton M., Wang, Jianyang, Zhu, Jie, Chang, Huibin, Guo, Xinwen, Walton, Krista S., Song, Chunshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue C
container_start_page 283
container_title Journal of catalysis
container_volume 383
creator Jiang, Xiao
Nie, Xiaowa
Gong, Yutao
Moran, Colton M.
Wang, Jianyang
Zhu, Jie
Chang, Huibin
Guo, Xinwen
Walton, Krista S.
Song, Chunshan
description [Display omitted] •Adding 0.1 mol% H2O in the feed increases CH3OH formation rate by 20% over In2O3/ZrO2.•H2O-induced oxygen vacancies improve CO2 adsorption capacity.•DFT reveals the correlation of InOOH and CH3OH formation with H2O addition.•Excess H2O leads to aggregation of catalyst and negatively affects H2 dissociation.•Excess H2O causes surface variations of InOOH species and oxygen vacancies. CO2 hydrogenation with renewable energy is one of the promising approaches to mitigate CO2 emissions and produce sustainable chemicals and fuels. The effect of adding H2O in the feed gas on the activity and selectivity of In2O3/ZrO2 catalysts for CO2 hydrogenation to methanol was studied using combined experimentatal and computational efforts. Notably, adding an appropriate amount of H2O (0.1 mol%) in the feed gas significantly enhanced the CH3OH formation (ca. 20%) with improved selectivity. Characterization with STEM/EDS and CO2-TPD confirmed the preservation of In-Zr strong interaction in the presence of additional H2O and H2O-induced oxygen vacancies, which significantly improved CO2 adsorption capacity. XPS analysis revealed the formation of InOOH species due to H2O addition, which appeared to correlate to H2O-dependant enhancement of CH3OH formation. Density functional theory calculations rationalized the effect of surface H2O on InOOH formation and its correlation to CH3OH synthesis activity. Adding H2O was found to facilitate surface InOOH formation, suppress CO formation through COOH* intermediate, and promote CH3OH formation via HCOO* intermediate. However, excess H2O addition resulted in aggregation of In species and reduction of surface In0 for H2 dissociation.
doi_str_mv 10.1016/j.jcat.2020.01.014
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1799403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951720300154</els_id><sourcerecordid>S0021951720300154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-75e1947e84a22129f88fb7a935da14ccf9668b705d7ff271c85c82622c1c293</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BT8H7tnnZj2zAS6kfLQg96MlLSLMvdss2kSSK_fdmqWdh4MFjZt68IeQW2AwYNPP9bG90mnHG2YxBRnVGJsAkK3gjq3MyYYxDIWsQl-Qqxj1jAHXdTsiwoMYftr3DjuLPJ4b-gC7pgWrX0YenNxrTV3ek3tIV31C0Fk2i3tG145ty_h42nObDejjGRK0PdJkXu2MX_Ac6nfrMTJ4eMO2088M1ubB6iHjzN6fk9enxbbkqXjbP6-XipTBVKVIhagRZCWwrzTlwadvWboWWZd1pqIyxsmnarWB1J6zlAkxbm5Y3nBswXJZTcndy9TH1Kpo-odkZ71yOrkBIWbEyk_iJZIKPMaBVn_l1HY4KmBorVXs1VqrGShWDjCqL7k8izOG_ewyjOzqDXR9G8873_8l_AacPfco</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Xiao ; Nie, Xiaowa ; Gong, Yutao ; Moran, Colton M. ; Wang, Jianyang ; Zhu, Jie ; Chang, Huibin ; Guo, Xinwen ; Walton, Krista S. ; Song, Chunshan</creator><creatorcontrib>Jiang, Xiao ; Nie, Xiaowa ; Gong, Yutao ; Moran, Colton M. ; Wang, Jianyang ; Zhu, Jie ; Chang, Huibin ; Guo, Xinwen ; Walton, Krista S. ; Song, Chunshan ; American Institute of Chemical Engineers (AIChE), New York, NY (United States) ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>[Display omitted] •Adding 0.1 mol% H2O in the feed increases CH3OH formation rate by 20% over In2O3/ZrO2.•H2O-induced oxygen vacancies improve CO2 adsorption capacity.•DFT reveals the correlation of InOOH and CH3OH formation with H2O addition.•Excess H2O leads to aggregation of catalyst and negatively affects H2 dissociation.•Excess H2O causes surface variations of InOOH species and oxygen vacancies. CO2 hydrogenation with renewable energy is one of the promising approaches to mitigate CO2 emissions and produce sustainable chemicals and fuels. The effect of adding H2O in the feed gas on the activity and selectivity of In2O3/ZrO2 catalysts for CO2 hydrogenation to methanol was studied using combined experimentatal and computational efforts. Notably, adding an appropriate amount of H2O (0.1 mol%) in the feed gas significantly enhanced the CH3OH formation (ca. 20%) with improved selectivity. Characterization with STEM/EDS and CO2-TPD confirmed the preservation of In-Zr strong interaction in the presence of additional H2O and H2O-induced oxygen vacancies, which significantly improved CO2 adsorption capacity. XPS analysis revealed the formation of InOOH species due to H2O addition, which appeared to correlate to H2O-dependant enhancement of CH3OH formation. Density functional theory calculations rationalized the effect of surface H2O on InOOH formation and its correlation to CH3OH synthesis activity. Adding H2O was found to facilitate surface InOOH formation, suppress CO formation through COOH* intermediate, and promote CH3OH formation via HCOO* intermediate. However, excess H2O addition resulted in aggregation of In species and reduction of surface In0 for H2 dissociation.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2020.01.014</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chemistry ; CO2 hydrogenation ; Density functional theory (DFT) ; Engineering ; In2O3/ZrO2 catalyst ; Methanol ; Oxygen vacancies ; Reaction mechanisms ; Water effect</subject><ispartof>Journal of catalysis, 2020-03, Vol.383 (C), p.283-296</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-75e1947e84a22129f88fb7a935da14ccf9668b705d7ff271c85c82622c1c293</citedby><cites>FETCH-LOGICAL-c437t-75e1947e84a22129f88fb7a935da14ccf9668b705d7ff271c85c82622c1c293</cites><orcidid>0000-0002-6597-4979 ; 0000-0002-4902-1828 ; 0000-0003-2344-9911 ; 0000-0002-0962-9644 ; 0000000265974979 ; 0000000323449911 ; 0000000249021828 ; 0000000209629644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcat.2020.01.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1799403$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Xiao</creatorcontrib><creatorcontrib>Nie, Xiaowa</creatorcontrib><creatorcontrib>Gong, Yutao</creatorcontrib><creatorcontrib>Moran, Colton M.</creatorcontrib><creatorcontrib>Wang, Jianyang</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Chang, Huibin</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><creatorcontrib>Walton, Krista S.</creatorcontrib><creatorcontrib>Song, Chunshan</creatorcontrib><creatorcontrib>American Institute of Chemical Engineers (AIChE), New York, NY (United States)</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol</title><title>Journal of catalysis</title><description>[Display omitted] •Adding 0.1 mol% H2O in the feed increases CH3OH formation rate by 20% over In2O3/ZrO2.•H2O-induced oxygen vacancies improve CO2 adsorption capacity.•DFT reveals the correlation of InOOH and CH3OH formation with H2O addition.•Excess H2O leads to aggregation of catalyst and negatively affects H2 dissociation.•Excess H2O causes surface variations of InOOH species and oxygen vacancies. CO2 hydrogenation with renewable energy is one of the promising approaches to mitigate CO2 emissions and produce sustainable chemicals and fuels. The effect of adding H2O in the feed gas on the activity and selectivity of In2O3/ZrO2 catalysts for CO2 hydrogenation to methanol was studied using combined experimentatal and computational efforts. Notably, adding an appropriate amount of H2O (0.1 mol%) in the feed gas significantly enhanced the CH3OH formation (ca. 20%) with improved selectivity. Characterization with STEM/EDS and CO2-TPD confirmed the preservation of In-Zr strong interaction in the presence of additional H2O and H2O-induced oxygen vacancies, which significantly improved CO2 adsorption capacity. XPS analysis revealed the formation of InOOH species due to H2O addition, which appeared to correlate to H2O-dependant enhancement of CH3OH formation. Density functional theory calculations rationalized the effect of surface H2O on InOOH formation and its correlation to CH3OH synthesis activity. Adding H2O was found to facilitate surface InOOH formation, suppress CO formation through COOH* intermediate, and promote CH3OH formation via HCOO* intermediate. However, excess H2O addition resulted in aggregation of In species and reduction of surface In0 for H2 dissociation.</description><subject>Chemistry</subject><subject>CO2 hydrogenation</subject><subject>Density functional theory (DFT)</subject><subject>Engineering</subject><subject>In2O3/ZrO2 catalyst</subject><subject>Methanol</subject><subject>Oxygen vacancies</subject><subject>Reaction mechanisms</subject><subject>Water effect</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BT8H7tnnZj2zAS6kfLQg96MlLSLMvdss2kSSK_fdmqWdh4MFjZt68IeQW2AwYNPP9bG90mnHG2YxBRnVGJsAkK3gjq3MyYYxDIWsQl-Qqxj1jAHXdTsiwoMYftr3DjuLPJ4b-gC7pgWrX0YenNxrTV3ek3tIV31C0Fk2i3tG145ty_h42nObDejjGRK0PdJkXu2MX_Ac6nfrMTJ4eMO2088M1ubB6iHjzN6fk9enxbbkqXjbP6-XipTBVKVIhagRZCWwrzTlwadvWboWWZd1pqIyxsmnarWB1J6zlAkxbm5Y3nBswXJZTcndy9TH1Kpo-odkZ71yOrkBIWbEyk_iJZIKPMaBVn_l1HY4KmBorVXs1VqrGShWDjCqL7k8izOG_ewyjOzqDXR9G8873_8l_AacPfco</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Jiang, Xiao</creator><creator>Nie, Xiaowa</creator><creator>Gong, Yutao</creator><creator>Moran, Colton M.</creator><creator>Wang, Jianyang</creator><creator>Zhu, Jie</creator><creator>Chang, Huibin</creator><creator>Guo, Xinwen</creator><creator>Walton, Krista S.</creator><creator>Song, Chunshan</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6597-4979</orcidid><orcidid>https://orcid.org/0000-0002-4902-1828</orcidid><orcidid>https://orcid.org/0000-0003-2344-9911</orcidid><orcidid>https://orcid.org/0000-0002-0962-9644</orcidid><orcidid>https://orcid.org/0000000265974979</orcidid><orcidid>https://orcid.org/0000000323449911</orcidid><orcidid>https://orcid.org/0000000249021828</orcidid><orcidid>https://orcid.org/0000000209629644</orcidid></search><sort><creationdate>202003</creationdate><title>A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol</title><author>Jiang, Xiao ; Nie, Xiaowa ; Gong, Yutao ; Moran, Colton M. ; Wang, Jianyang ; Zhu, Jie ; Chang, Huibin ; Guo, Xinwen ; Walton, Krista S. ; Song, Chunshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-75e1947e84a22129f88fb7a935da14ccf9668b705d7ff271c85c82622c1c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>CO2 hydrogenation</topic><topic>Density functional theory (DFT)</topic><topic>Engineering</topic><topic>In2O3/ZrO2 catalyst</topic><topic>Methanol</topic><topic>Oxygen vacancies</topic><topic>Reaction mechanisms</topic><topic>Water effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xiao</creatorcontrib><creatorcontrib>Nie, Xiaowa</creatorcontrib><creatorcontrib>Gong, Yutao</creatorcontrib><creatorcontrib>Moran, Colton M.</creatorcontrib><creatorcontrib>Wang, Jianyang</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Chang, Huibin</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><creatorcontrib>Walton, Krista S.</creatorcontrib><creatorcontrib>Song, Chunshan</creatorcontrib><creatorcontrib>American Institute of Chemical Engineers (AIChE), New York, NY (United States)</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xiao</au><au>Nie, Xiaowa</au><au>Gong, Yutao</au><au>Moran, Colton M.</au><au>Wang, Jianyang</au><au>Zhu, Jie</au><au>Chang, Huibin</au><au>Guo, Xinwen</au><au>Walton, Krista S.</au><au>Song, Chunshan</au><aucorp>American Institute of Chemical Engineers (AIChE), New York, NY (United States)</aucorp><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol</atitle><jtitle>Journal of catalysis</jtitle><date>2020-03</date><risdate>2020</risdate><volume>383</volume><issue>C</issue><spage>283</spage><epage>296</epage><pages>283-296</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><abstract>[Display omitted] •Adding 0.1 mol% H2O in the feed increases CH3OH formation rate by 20% over In2O3/ZrO2.•H2O-induced oxygen vacancies improve CO2 adsorption capacity.•DFT reveals the correlation of InOOH and CH3OH formation with H2O addition.•Excess H2O leads to aggregation of catalyst and negatively affects H2 dissociation.•Excess H2O causes surface variations of InOOH species and oxygen vacancies. CO2 hydrogenation with renewable energy is one of the promising approaches to mitigate CO2 emissions and produce sustainable chemicals and fuels. The effect of adding H2O in the feed gas on the activity and selectivity of In2O3/ZrO2 catalysts for CO2 hydrogenation to methanol was studied using combined experimentatal and computational efforts. Notably, adding an appropriate amount of H2O (0.1 mol%) in the feed gas significantly enhanced the CH3OH formation (ca. 20%) with improved selectivity. Characterization with STEM/EDS and CO2-TPD confirmed the preservation of In-Zr strong interaction in the presence of additional H2O and H2O-induced oxygen vacancies, which significantly improved CO2 adsorption capacity. XPS analysis revealed the formation of InOOH species due to H2O addition, which appeared to correlate to H2O-dependant enhancement of CH3OH formation. Density functional theory calculations rationalized the effect of surface H2O on InOOH formation and its correlation to CH3OH synthesis activity. Adding H2O was found to facilitate surface InOOH formation, suppress CO formation through COOH* intermediate, and promote CH3OH formation via HCOO* intermediate. However, excess H2O addition resulted in aggregation of In species and reduction of surface In0 for H2 dissociation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2020.01.014</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6597-4979</orcidid><orcidid>https://orcid.org/0000-0002-4902-1828</orcidid><orcidid>https://orcid.org/0000-0003-2344-9911</orcidid><orcidid>https://orcid.org/0000-0002-0962-9644</orcidid><orcidid>https://orcid.org/0000000265974979</orcidid><orcidid>https://orcid.org/0000000323449911</orcidid><orcidid>https://orcid.org/0000000249021828</orcidid><orcidid>https://orcid.org/0000000209629644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2020-03, Vol.383 (C), p.283-296
issn 0021-9517
1090-2694
language eng
recordid cdi_osti_scitechconnect_1799403
source Elsevier ScienceDirect Journals
subjects Chemistry
CO2 hydrogenation
Density functional theory (DFT)
Engineering
In2O3/ZrO2 catalyst
Methanol
Oxygen vacancies
Reaction mechanisms
Water effect
title A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20experimental%20and%20DFT%20study%20of%20H2O%20effect%20on%20In2O3/ZrO2%20catalyst%20for%20CO2%20hydrogenation%20to%20methanol&rft.jtitle=Journal%20of%20catalysis&rft.au=Jiang,%20Xiao&rft.aucorp=American%20Institute%20of%20Chemical%20Engineers%20(AIChE),%20New%20York,%20NY%20(United%20States)&rft.date=2020-03&rft.volume=383&rft.issue=C&rft.spage=283&rft.epage=296&rft.pages=283-296&rft.issn=0021-9517&rft.eissn=1090-2694&rft_id=info:doi/10.1016/j.jcat.2020.01.014&rft_dat=%3Celsevier_osti_%3ES0021951720300154%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021951720300154&rfr_iscdi=true