Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants

Proton exchange membrane fuel cells (PEMFCs) with 0.1 and 0.4 mg Pt cm(-2) cathode catalyst loadings were separately contaminated with seven organic species: Acetonitrile, acetylene, bromomethane, iso-propanol, methyl methacrylate, naphthalene, and propene. The lower catalyst loading led to larger c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-02, Vol.25 (5), p.1060, Article 1060
Hauptverfasser: St-Pierre, Jean, Zhai, Yunfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1060
container_title Molecules (Basel, Switzerland)
container_volume 25
creator St-Pierre, Jean
Zhai, Yunfeng
description Proton exchange membrane fuel cells (PEMFCs) with 0.1 and 0.4 mg Pt cm(-2) cathode catalyst loadings were separately contaminated with seven organic species: Acetonitrile, acetylene, bromomethane, iso-propanol, methyl methacrylate, naphthalene, and propene. The lower catalyst loading led to larger cell voltage losses at the steady state. Three closely related electrical equivalent circuits were used to fit impedance spectra obtained before, during, and after contamination, which revealed that the cell voltage loss was due to higher kinetic and mass transfer resistances. A significant correlation was not found between the steady-state cell voltage loss and the sum of the kinetic and mass transfer resistance changes. Major increases in research program costs and efforts would be required to find a predictive correlation, which suggests a focus on contamination prevention and recovery measures rather than contamination mechanisms.
doi_str_mv 10.3390/molecules25051060
format Article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1799151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_279f86402d3c476198a47b62629d752d</doaj_id><sourcerecordid>32120973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-1ce65d800f0d53bde299fa952c9673ccb8281a80564be15dc8a3bcbea43de06f3</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxYMotq5-AF9k8FVWb_7O5EUoQ2sXViyo4FvIJHd2U2aTZSZb6bc3duza4otPuZz8zrkJh5DXFN5zruHDLg3oDgNOTIKkoOAJOaWCwZKD0E8fzCfkxTRdAzAqqHxOTjijDHTNT8mP1W5vXa5SX-UtVq3N2-SxusrVOlkf4qZKsbo6_3zRVm2K2e5CtDkUrbutvuINjnaozsLYpTHiXyLm6SV51tthwld_zgX5fnH-rb1crr98WrVn66UTmuUldaikbwB68JJ3HpnWvdWSOa1q7lzXsIbaBqQSHVLpXWN55zq0gnsE1fMFWc25Ptlrsx_Dzo63Jtlg7oQ0bowdc3ADGlbrvlECmOdO1Irqxoq6U0wx7WtZ1AX5OGftD90OvcOYy_8ehT6-iWFrNunG1LTWoFUJeDsHpCkHM7mQ0W1dihFdNoXRVNIC0RlyY5qmEfvjAgrmd6_mn16L583Dlx0d90UWoJmBn9ilvmzG6PCIAYBkmlGtyyR4G_JdiW06xFys7_7fyn8B4JjBTQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>St-Pierre, Jean ; Zhai, Yunfeng</creator><creatorcontrib>St-Pierre, Jean ; Zhai, Yunfeng ; Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><description>Proton exchange membrane fuel cells (PEMFCs) with 0.1 and 0.4 mg Pt cm(-2) cathode catalyst loadings were separately contaminated with seven organic species: Acetonitrile, acetylene, bromomethane, iso-propanol, methyl methacrylate, naphthalene, and propene. The lower catalyst loading led to larger cell voltage losses at the steady state. Three closely related electrical equivalent circuits were used to fit impedance spectra obtained before, during, and after contamination, which revealed that the cell voltage loss was due to higher kinetic and mass transfer resistances. A significant correlation was not found between the steady-state cell voltage loss and the sum of the kinetic and mass transfer resistance changes. Major increases in research program costs and efforts would be required to find a predictive correlation, which suggests a focus on contamination prevention and recovery measures rather than contamination mechanisms.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules25051060</identifier><identifier>PMID: 32120973</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>2-Propanol - chemistry ; Acetonitriles - chemistry ; Acetylene - chemistry ; Alkenes - chemistry ; BASIC BIOLOGICAL SCIENCES ; Biochemistry &amp; Molecular Biology ; Bioelectric Energy Sources ; Carbon - chemistry ; Catalysis ; catalyst loading ; cathode ; Chemistry ; Chemistry, Multidisciplinary ; contamination ; durability ; Electric Impedance ; Electricity ; Electrodes ; Equipment Contamination ; Hydrocarbons, Brominated - chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Life Sciences &amp; Biomedicine ; Membranes, Artificial ; Methylmethacrylate - chemistry ; Naphthalenes - chemistry ; Physical Sciences ; Platinum - chemistry ; proton exchange membrane fuel cells ; Protons ; Science &amp; Technology</subject><ispartof>Molecules (Basel, Switzerland), 2020-02, Vol.25 (5), p.1060, Article 1060</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000529219900043</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c492t-1ce65d800f0d53bde299fa952c9673ccb8281a80564be15dc8a3bcbea43de06f3</citedby><cites>FETCH-LOGICAL-c492t-1ce65d800f0d53bde299fa952c9673ccb8281a80564be15dc8a3bcbea43de06f3</cites><orcidid>0000-0001-5070-9681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32120973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1799151$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>St-Pierre, Jean</creatorcontrib><creatorcontrib>Zhai, Yunfeng</creatorcontrib><creatorcontrib>Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><title>Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants</title><title>Molecules (Basel, Switzerland)</title><addtitle>MOLECULES</addtitle><addtitle>Molecules</addtitle><description>Proton exchange membrane fuel cells (PEMFCs) with 0.1 and 0.4 mg Pt cm(-2) cathode catalyst loadings were separately contaminated with seven organic species: Acetonitrile, acetylene, bromomethane, iso-propanol, methyl methacrylate, naphthalene, and propene. The lower catalyst loading led to larger cell voltage losses at the steady state. Three closely related electrical equivalent circuits were used to fit impedance spectra obtained before, during, and after contamination, which revealed that the cell voltage loss was due to higher kinetic and mass transfer resistances. A significant correlation was not found between the steady-state cell voltage loss and the sum of the kinetic and mass transfer resistance changes. Major increases in research program costs and efforts would be required to find a predictive correlation, which suggests a focus on contamination prevention and recovery measures rather than contamination mechanisms.</description><subject>2-Propanol - chemistry</subject><subject>Acetonitriles - chemistry</subject><subject>Acetylene - chemistry</subject><subject>Alkenes - chemistry</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Bioelectric Energy Sources</subject><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>catalyst loading</subject><subject>cathode</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>contamination</subject><subject>durability</subject><subject>Electric Impedance</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Equipment Contamination</subject><subject>Hydrocarbons, Brominated - chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Membranes, Artificial</subject><subject>Methylmethacrylate - chemistry</subject><subject>Naphthalenes - chemistry</subject><subject>Physical Sciences</subject><subject>Platinum - chemistry</subject><subject>proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Science &amp; Technology</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkV9rFDEUxYMotq5-AF9k8FVWb_7O5EUoQ2sXViyo4FvIJHd2U2aTZSZb6bc3duza4otPuZz8zrkJh5DXFN5zruHDLg3oDgNOTIKkoOAJOaWCwZKD0E8fzCfkxTRdAzAqqHxOTjijDHTNT8mP1W5vXa5SX-UtVq3N2-SxusrVOlkf4qZKsbo6_3zRVm2K2e5CtDkUrbutvuINjnaozsLYpTHiXyLm6SV51tthwld_zgX5fnH-rb1crr98WrVn66UTmuUldaikbwB68JJ3HpnWvdWSOa1q7lzXsIbaBqQSHVLpXWN55zq0gnsE1fMFWc25Ptlrsx_Dzo63Jtlg7oQ0bowdc3ADGlbrvlECmOdO1Irqxoq6U0wx7WtZ1AX5OGftD90OvcOYy_8ehT6-iWFrNunG1LTWoFUJeDsHpCkHM7mQ0W1dihFdNoXRVNIC0RlyY5qmEfvjAgrmd6_mn16L583Dlx0d90UWoJmBn9ilvmzG6PCIAYBkmlGtyyR4G_JdiW06xFys7_7fyn8B4JjBTQ</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>St-Pierre, Jean</creator><creator>Zhai, Yunfeng</creator><general>Mdpi</general><general>MDPI</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5070-9681</orcidid></search><sort><creationdate>20200227</creationdate><title>Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants</title><author>St-Pierre, Jean ; Zhai, Yunfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-1ce65d800f0d53bde299fa952c9673ccb8281a80564be15dc8a3bcbea43de06f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2-Propanol - chemistry</topic><topic>Acetonitriles - chemistry</topic><topic>Acetylene - chemistry</topic><topic>Alkenes - chemistry</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Bioelectric Energy Sources</topic><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>catalyst loading</topic><topic>cathode</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>contamination</topic><topic>durability</topic><topic>Electric Impedance</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Equipment Contamination</topic><topic>Hydrocarbons, Brominated - chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Membranes, Artificial</topic><topic>Methylmethacrylate - chemistry</topic><topic>Naphthalenes - chemistry</topic><topic>Physical Sciences</topic><topic>Platinum - chemistry</topic><topic>proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>St-Pierre, Jean</creatorcontrib><creatorcontrib>Zhai, Yunfeng</creatorcontrib><creatorcontrib>Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>St-Pierre, Jean</au><au>Zhai, Yunfeng</au><aucorp>Univ. of Hawaii, Honolulu, HI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><stitle>MOLECULES</stitle><addtitle>Molecules</addtitle><date>2020-02-27</date><risdate>2020</risdate><volume>25</volume><issue>5</issue><spage>1060</spage><pages>1060-</pages><artnum>1060</artnum><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Proton exchange membrane fuel cells (PEMFCs) with 0.1 and 0.4 mg Pt cm(-2) cathode catalyst loadings were separately contaminated with seven organic species: Acetonitrile, acetylene, bromomethane, iso-propanol, methyl methacrylate, naphthalene, and propene. The lower catalyst loading led to larger cell voltage losses at the steady state. Three closely related electrical equivalent circuits were used to fit impedance spectra obtained before, during, and after contamination, which revealed that the cell voltage loss was due to higher kinetic and mass transfer resistances. A significant correlation was not found between the steady-state cell voltage loss and the sum of the kinetic and mass transfer resistance changes. Major increases in research program costs and efforts would be required to find a predictive correlation, which suggests a focus on contamination prevention and recovery measures rather than contamination mechanisms.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32120973</pmid><doi>10.3390/molecules25051060</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5070-9681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2020-02, Vol.25 (5), p.1060, Article 1060
issn 1420-3049
1420-3049
language eng
recordid cdi_osti_scitechconnect_1799151
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects 2-Propanol - chemistry
Acetonitriles - chemistry
Acetylene - chemistry
Alkenes - chemistry
BASIC BIOLOGICAL SCIENCES
Biochemistry & Molecular Biology
Bioelectric Energy Sources
Carbon - chemistry
Catalysis
catalyst loading
cathode
Chemistry
Chemistry, Multidisciplinary
contamination
durability
Electric Impedance
Electricity
Electrodes
Equipment Contamination
Hydrocarbons, Brominated - chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Life Sciences & Biomedicine
Membranes, Artificial
Methylmethacrylate - chemistry
Naphthalenes - chemistry
Physical Sciences
Platinum - chemistry
proton exchange membrane fuel cells
Protons
Science & Technology
title Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20the%20Cathode%20Pt%20Loading%20on%20PEMFC%20Contamination%20by%20Several%20Airborne%20Contaminants&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=St-Pierre,%20Jean&rft.aucorp=Univ.%20of%20Hawaii,%20Honolulu,%20HI%20(United%20States)&rft.date=2020-02-27&rft.volume=25&rft.issue=5&rft.spage=1060&rft.pages=1060-&rft.artnum=1060&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules25051060&rft_dat=%3Cpubmed_osti_%3E32120973%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32120973&rft_doaj_id=oai_doaj_org_article_279f86402d3c476198a47b62629d752d&rfr_iscdi=true