2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis

High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-08, Vol.33 (31), p.e2100347-n/a
Hauptverfasser: Cavin, John, Ahmadiparidari, Alireza, Majidi, Leily, Thind, Arashdeep Singh, Misal, Saurabh N., Prajapati, Aditya, Hemmat, Zahra, Rastegar, Sina, Beukelman, Andrew, Singh, Meenesh R., Unocic, Kinga A., Salehi‐Khojin, Amin, Mishra, Rohan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page e2100347
container_title Advanced materials (Weinheim)
container_volume 33
creator Cavin, John
Ahmadiparidari, Alireza
Majidi, Leily
Thind, Arashdeep Singh
Misal, Saurabh N.
Prajapati, Aditya
Hemmat, Zahra
Rastegar, Sina
Beukelman, Andrew
Singh, Meenesh R.
Unocic, Kinga A.
Salehi‐Khojin, Amin
Mishra, Rohan
description High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2 electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems. High‐entropy transition metal dichalcogenide alloys containing 4 or 5 transition metals are synthesized based on first‐principles stability predictions. The 5‐component alloy (MoWVNbTa)S2 is shown to be an excellent electrocatalyst for the conversion of CO2 into CO. First‐principles calculations suggest that a small concentration of highly active sites is responsible for the high activity.
doi_str_mv 10.1002/adma.202100347
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1798903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557882379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3777-c214b72f26eeaf4dcadf7851779bcf8bbcc90cadf1bd3f0e3cc674449525101d3</originalsourceid><addsrcrecordid>eNqF0b1OwzAUBWALgUT5WZkjWFhSbMeO47FqC0WiYgFWy7lxqKs0LnYqyMYj8Iw8Ca6KQGJhsnz1HctXB6EzgocEY3qlq5UeUkzjJWNiDw0IpyRlWPJ9NMAy46nMWXGIjkJYYoxljvMBeqKTZGafF5_vH9O2827dJw9et8F21rXJ3HS6SSYWFroB92xaW5mQ1M4nY-3LCCbWvcVZMm0MxDTo6Ptgwwk6qHUTzOn3eYwer6cP41l6d39zOx7dpZAJIVKghJWC1jQ3RtesAl3VouBECFlCXZQlgMTbISmrrMYmA8gFY0xyygkmVXaMznfvutBZFcB2Bhbg2jZ-RxEhC4mziC53aO3dy8aETq1sANM0ujVuExTljHMpCkEivfhDl27j27hCVFwUBc2EjGq4U-BdCN7Uau3tSvteEay2XahtF-qnixiQu8CrbUz_j1ajyXz0m_0C58-OOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557882379</pqid></control><display><type>article</type><title>2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis</title><source>Access via Wiley Online Library</source><creator>Cavin, John ; Ahmadiparidari, Alireza ; Majidi, Leily ; Thind, Arashdeep Singh ; Misal, Saurabh N. ; Prajapati, Aditya ; Hemmat, Zahra ; Rastegar, Sina ; Beukelman, Andrew ; Singh, Meenesh R. ; Unocic, Kinga A. ; Salehi‐Khojin, Amin ; Mishra, Rohan</creator><creatorcontrib>Cavin, John ; Ahmadiparidari, Alireza ; Majidi, Leily ; Thind, Arashdeep Singh ; Misal, Saurabh N. ; Prajapati, Aditya ; Hemmat, Zahra ; Rastegar, Sina ; Beukelman, Andrew ; Singh, Meenesh R. ; Unocic, Kinga A. ; Salehi‐Khojin, Amin ; Mishra, Rohan</creatorcontrib><description>High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2 electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems. High‐entropy transition metal dichalcogenide alloys containing 4 or 5 transition metals are synthesized based on first‐principles stability predictions. The 5‐component alloy (MoWVNbTa)S2 is shown to be an excellent electrocatalyst for the conversion of CO2 into CO. First‐principles calculations suggest that a small concentration of highly active sites is responsible for the high activity.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202100347</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Alloying elements ; Carbon dioxide ; Catalysis ; Chalcogenides ; electrocatalysis ; Electrochemical analysis ; Entropy ; High entropy alloys ; Materials science ; Transition metal alloys ; Transition metal compounds ; transition metal dichalcogenides</subject><ispartof>Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2100347-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3777-c214b72f26eeaf4dcadf7851779bcf8bbcc90cadf1bd3f0e3cc674449525101d3</citedby><cites>FETCH-LOGICAL-c3777-c214b72f26eeaf4dcadf7851779bcf8bbcc90cadf1bd3f0e3cc674449525101d3</cites><orcidid>0000-0002-0876-5409 ; 0000-0003-1819-204X ; 0000-0003-1261-0087 ; 0000000208765409 ; 0000000312610087 ; 000000031819204X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202100347$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202100347$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1798903$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavin, John</creatorcontrib><creatorcontrib>Ahmadiparidari, Alireza</creatorcontrib><creatorcontrib>Majidi, Leily</creatorcontrib><creatorcontrib>Thind, Arashdeep Singh</creatorcontrib><creatorcontrib>Misal, Saurabh N.</creatorcontrib><creatorcontrib>Prajapati, Aditya</creatorcontrib><creatorcontrib>Hemmat, Zahra</creatorcontrib><creatorcontrib>Rastegar, Sina</creatorcontrib><creatorcontrib>Beukelman, Andrew</creatorcontrib><creatorcontrib>Singh, Meenesh R.</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Salehi‐Khojin, Amin</creatorcontrib><creatorcontrib>Mishra, Rohan</creatorcontrib><title>2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis</title><title>Advanced materials (Weinheim)</title><description>High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2 electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems. High‐entropy transition metal dichalcogenide alloys containing 4 or 5 transition metals are synthesized based on first‐principles stability predictions. The 5‐component alloy (MoWVNbTa)S2 is shown to be an excellent electrocatalyst for the conversion of CO2 into CO. First‐principles calculations suggest that a small concentration of highly active sites is responsible for the high activity.</description><subject>2D materials</subject><subject>Alloying elements</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Chalcogenides</subject><subject>electrocatalysis</subject><subject>Electrochemical analysis</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>Materials science</subject><subject>Transition metal alloys</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0b1OwzAUBWALgUT5WZkjWFhSbMeO47FqC0WiYgFWy7lxqKs0LnYqyMYj8Iw8Ca6KQGJhsnz1HctXB6EzgocEY3qlq5UeUkzjJWNiDw0IpyRlWPJ9NMAy46nMWXGIjkJYYoxljvMBeqKTZGafF5_vH9O2827dJw9et8F21rXJ3HS6SSYWFroB92xaW5mQ1M4nY-3LCCbWvcVZMm0MxDTo6Ptgwwk6qHUTzOn3eYwer6cP41l6d39zOx7dpZAJIVKghJWC1jQ3RtesAl3VouBECFlCXZQlgMTbISmrrMYmA8gFY0xyygkmVXaMznfvutBZFcB2Bhbg2jZ-RxEhC4mziC53aO3dy8aETq1sANM0ujVuExTljHMpCkEivfhDl27j27hCVFwUBc2EjGq4U-BdCN7Uau3tSvteEay2XahtF-qnixiQu8CrbUz_j1ajyXz0m_0C58-OOQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cavin, John</creator><creator>Ahmadiparidari, Alireza</creator><creator>Majidi, Leily</creator><creator>Thind, Arashdeep Singh</creator><creator>Misal, Saurabh N.</creator><creator>Prajapati, Aditya</creator><creator>Hemmat, Zahra</creator><creator>Rastegar, Sina</creator><creator>Beukelman, Andrew</creator><creator>Singh, Meenesh R.</creator><creator>Unocic, Kinga A.</creator><creator>Salehi‐Khojin, Amin</creator><creator>Mishra, Rohan</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0876-5409</orcidid><orcidid>https://orcid.org/0000-0003-1819-204X</orcidid><orcidid>https://orcid.org/0000-0003-1261-0087</orcidid><orcidid>https://orcid.org/0000000208765409</orcidid><orcidid>https://orcid.org/0000000312610087</orcidid><orcidid>https://orcid.org/000000031819204X</orcidid></search><sort><creationdate>20210801</creationdate><title>2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis</title><author>Cavin, John ; Ahmadiparidari, Alireza ; Majidi, Leily ; Thind, Arashdeep Singh ; Misal, Saurabh N. ; Prajapati, Aditya ; Hemmat, Zahra ; Rastegar, Sina ; Beukelman, Andrew ; Singh, Meenesh R. ; Unocic, Kinga A. ; Salehi‐Khojin, Amin ; Mishra, Rohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3777-c214b72f26eeaf4dcadf7851779bcf8bbcc90cadf1bd3f0e3cc674449525101d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D materials</topic><topic>Alloying elements</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Chalcogenides</topic><topic>electrocatalysis</topic><topic>Electrochemical analysis</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>Materials science</topic><topic>Transition metal alloys</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavin, John</creatorcontrib><creatorcontrib>Ahmadiparidari, Alireza</creatorcontrib><creatorcontrib>Majidi, Leily</creatorcontrib><creatorcontrib>Thind, Arashdeep Singh</creatorcontrib><creatorcontrib>Misal, Saurabh N.</creatorcontrib><creatorcontrib>Prajapati, Aditya</creatorcontrib><creatorcontrib>Hemmat, Zahra</creatorcontrib><creatorcontrib>Rastegar, Sina</creatorcontrib><creatorcontrib>Beukelman, Andrew</creatorcontrib><creatorcontrib>Singh, Meenesh R.</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Salehi‐Khojin, Amin</creatorcontrib><creatorcontrib>Mishra, Rohan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavin, John</au><au>Ahmadiparidari, Alireza</au><au>Majidi, Leily</au><au>Thind, Arashdeep Singh</au><au>Misal, Saurabh N.</au><au>Prajapati, Aditya</au><au>Hemmat, Zahra</au><au>Rastegar, Sina</au><au>Beukelman, Andrew</au><au>Singh, Meenesh R.</au><au>Unocic, Kinga A.</au><au>Salehi‐Khojin, Amin</au><au>Mishra, Rohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>31</issue><spage>e2100347</spage><epage>n/a</epage><pages>e2100347-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2 electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems. High‐entropy transition metal dichalcogenide alloys containing 4 or 5 transition metals are synthesized based on first‐principles stability predictions. The 5‐component alloy (MoWVNbTa)S2 is shown to be an excellent electrocatalyst for the conversion of CO2 into CO. First‐principles calculations suggest that a small concentration of highly active sites is responsible for the high activity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202100347</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0876-5409</orcidid><orcidid>https://orcid.org/0000-0003-1819-204X</orcidid><orcidid>https://orcid.org/0000-0003-1261-0087</orcidid><orcidid>https://orcid.org/0000000208765409</orcidid><orcidid>https://orcid.org/0000000312610087</orcidid><orcidid>https://orcid.org/000000031819204X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2100347-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1798903
source Access via Wiley Online Library
subjects 2D materials
Alloying elements
Carbon dioxide
Catalysis
Chalcogenides
electrocatalysis
Electrochemical analysis
Entropy
High entropy alloys
Materials science
Transition metal alloys
Transition metal compounds
transition metal dichalcogenides
title 2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20High%E2%80%90Entropy%20Transition%20Metal%20Dichalcogenides%20for%20Carbon%20Dioxide%20Electrocatalysis&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cavin,%20John&rft.date=2021-08-01&rft.volume=33&rft.issue=31&rft.spage=e2100347&rft.epage=n/a&rft.pages=e2100347-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202100347&rft_dat=%3Cproquest_osti_%3E2557882379%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557882379&rft_id=info:pmid/&rfr_iscdi=true