2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis
High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-08, Vol.33 (31), p.e2100347-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | e2100347 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Cavin, John Ahmadiparidari, Alireza Majidi, Leily Thind, Arashdeep Singh Misal, Saurabh N. Prajapati, Aditya Hemmat, Zahra Rastegar, Sina Beukelman, Andrew Singh, Meenesh R. Unocic, Kinga A. Salehi‐Khojin, Amin Mishra, Rohan |
description | High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2 electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems.
High‐entropy transition metal dichalcogenide alloys containing 4 or 5 transition metals are synthesized based on first‐principles stability predictions. The 5‐component alloy (MoWVNbTa)S2 is shown to be an excellent electrocatalyst for the conversion of CO2 into CO. First‐principles calculations suggest that a small concentration of highly active sites is responsible for the high activity. |
doi_str_mv | 10.1002/adma.202100347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1798903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557882379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3777-c214b72f26eeaf4dcadf7851779bcf8bbcc90cadf1bd3f0e3cc674449525101d3</originalsourceid><addsrcrecordid>eNqF0b1OwzAUBWALgUT5WZkjWFhSbMeO47FqC0WiYgFWy7lxqKs0LnYqyMYj8Iw8Ca6KQGJhsnz1HctXB6EzgocEY3qlq5UeUkzjJWNiDw0IpyRlWPJ9NMAy46nMWXGIjkJYYoxljvMBeqKTZGafF5_vH9O2827dJw9et8F21rXJ3HS6SSYWFroB92xaW5mQ1M4nY-3LCCbWvcVZMm0MxDTo6Ptgwwk6qHUTzOn3eYwer6cP41l6d39zOx7dpZAJIVKghJWC1jQ3RtesAl3VouBECFlCXZQlgMTbISmrrMYmA8gFY0xyygkmVXaMznfvutBZFcB2Bhbg2jZ-RxEhC4mziC53aO3dy8aETq1sANM0ujVuExTljHMpCkEivfhDl27j27hCVFwUBc2EjGq4U-BdCN7Uau3tSvteEay2XahtF-qnixiQu8CrbUz_j1ajyXz0m_0C58-OOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557882379</pqid></control><display><type>article</type><title>2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis</title><source>Access via Wiley Online Library</source><creator>Cavin, John ; Ahmadiparidari, Alireza ; Majidi, Leily ; Thind, Arashdeep Singh ; Misal, Saurabh N. ; Prajapati, Aditya ; Hemmat, Zahra ; Rastegar, Sina ; Beukelman, Andrew ; Singh, Meenesh R. ; Unocic, Kinga A. ; Salehi‐Khojin, Amin ; Mishra, Rohan</creator><creatorcontrib>Cavin, John ; Ahmadiparidari, Alireza ; Majidi, Leily ; Thind, Arashdeep Singh ; Misal, Saurabh N. ; Prajapati, Aditya ; Hemmat, Zahra ; Rastegar, Sina ; Beukelman, Andrew ; Singh, Meenesh R. ; Unocic, Kinga A. ; Salehi‐Khojin, Amin ; Mishra, Rohan</creatorcontrib><description>High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2 electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems.
High‐entropy transition metal dichalcogenide alloys containing 4 or 5 transition metals are synthesized based on first‐principles stability predictions. The 5‐component alloy (MoWVNbTa)S2 is shown to be an excellent electrocatalyst for the conversion of CO2 into CO. First‐principles calculations suggest that a small concentration of highly active sites is responsible for the high activity.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202100347</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Alloying elements ; Carbon dioxide ; Catalysis ; Chalcogenides ; electrocatalysis ; Electrochemical analysis ; Entropy ; High entropy alloys ; Materials science ; Transition metal alloys ; Transition metal compounds ; transition metal dichalcogenides</subject><ispartof>Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2100347-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3777-c214b72f26eeaf4dcadf7851779bcf8bbcc90cadf1bd3f0e3cc674449525101d3</citedby><cites>FETCH-LOGICAL-c3777-c214b72f26eeaf4dcadf7851779bcf8bbcc90cadf1bd3f0e3cc674449525101d3</cites><orcidid>0000-0002-0876-5409 ; 0000-0003-1819-204X ; 0000-0003-1261-0087 ; 0000000208765409 ; 0000000312610087 ; 000000031819204X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202100347$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202100347$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1798903$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavin, John</creatorcontrib><creatorcontrib>Ahmadiparidari, Alireza</creatorcontrib><creatorcontrib>Majidi, Leily</creatorcontrib><creatorcontrib>Thind, Arashdeep Singh</creatorcontrib><creatorcontrib>Misal, Saurabh N.</creatorcontrib><creatorcontrib>Prajapati, Aditya</creatorcontrib><creatorcontrib>Hemmat, Zahra</creatorcontrib><creatorcontrib>Rastegar, Sina</creatorcontrib><creatorcontrib>Beukelman, Andrew</creatorcontrib><creatorcontrib>Singh, Meenesh R.</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Salehi‐Khojin, Amin</creatorcontrib><creatorcontrib>Mishra, Rohan</creatorcontrib><title>2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis</title><title>Advanced materials (Weinheim)</title><description>High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2 electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems.
High‐entropy transition metal dichalcogenide alloys containing 4 or 5 transition metals are synthesized based on first‐principles stability predictions. The 5‐component alloy (MoWVNbTa)S2 is shown to be an excellent electrocatalyst for the conversion of CO2 into CO. First‐principles calculations suggest that a small concentration of highly active sites is responsible for the high activity.</description><subject>2D materials</subject><subject>Alloying elements</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Chalcogenides</subject><subject>electrocatalysis</subject><subject>Electrochemical analysis</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>Materials science</subject><subject>Transition metal alloys</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0b1OwzAUBWALgUT5WZkjWFhSbMeO47FqC0WiYgFWy7lxqKs0LnYqyMYj8Iw8Ca6KQGJhsnz1HctXB6EzgocEY3qlq5UeUkzjJWNiDw0IpyRlWPJ9NMAy46nMWXGIjkJYYoxljvMBeqKTZGafF5_vH9O2827dJw9et8F21rXJ3HS6SSYWFroB92xaW5mQ1M4nY-3LCCbWvcVZMm0MxDTo6Ptgwwk6qHUTzOn3eYwer6cP41l6d39zOx7dpZAJIVKghJWC1jQ3RtesAl3VouBECFlCXZQlgMTbISmrrMYmA8gFY0xyygkmVXaMznfvutBZFcB2Bhbg2jZ-RxEhC4mziC53aO3dy8aETq1sANM0ujVuExTljHMpCkEivfhDl27j27hCVFwUBc2EjGq4U-BdCN7Uau3tSvteEay2XahtF-qnixiQu8CrbUz_j1ajyXz0m_0C58-OOQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cavin, John</creator><creator>Ahmadiparidari, Alireza</creator><creator>Majidi, Leily</creator><creator>Thind, Arashdeep Singh</creator><creator>Misal, Saurabh N.</creator><creator>Prajapati, Aditya</creator><creator>Hemmat, Zahra</creator><creator>Rastegar, Sina</creator><creator>Beukelman, Andrew</creator><creator>Singh, Meenesh R.</creator><creator>Unocic, Kinga A.</creator><creator>Salehi‐Khojin, Amin</creator><creator>Mishra, Rohan</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0876-5409</orcidid><orcidid>https://orcid.org/0000-0003-1819-204X</orcidid><orcidid>https://orcid.org/0000-0003-1261-0087</orcidid><orcidid>https://orcid.org/0000000208765409</orcidid><orcidid>https://orcid.org/0000000312610087</orcidid><orcidid>https://orcid.org/000000031819204X</orcidid></search><sort><creationdate>20210801</creationdate><title>2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis</title><author>Cavin, John ; Ahmadiparidari, Alireza ; Majidi, Leily ; Thind, Arashdeep Singh ; Misal, Saurabh N. ; Prajapati, Aditya ; Hemmat, Zahra ; Rastegar, Sina ; Beukelman, Andrew ; Singh, Meenesh R. ; Unocic, Kinga A. ; Salehi‐Khojin, Amin ; Mishra, Rohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3777-c214b72f26eeaf4dcadf7851779bcf8bbcc90cadf1bd3f0e3cc674449525101d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D materials</topic><topic>Alloying elements</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Chalcogenides</topic><topic>electrocatalysis</topic><topic>Electrochemical analysis</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>Materials science</topic><topic>Transition metal alloys</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavin, John</creatorcontrib><creatorcontrib>Ahmadiparidari, Alireza</creatorcontrib><creatorcontrib>Majidi, Leily</creatorcontrib><creatorcontrib>Thind, Arashdeep Singh</creatorcontrib><creatorcontrib>Misal, Saurabh N.</creatorcontrib><creatorcontrib>Prajapati, Aditya</creatorcontrib><creatorcontrib>Hemmat, Zahra</creatorcontrib><creatorcontrib>Rastegar, Sina</creatorcontrib><creatorcontrib>Beukelman, Andrew</creatorcontrib><creatorcontrib>Singh, Meenesh R.</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Salehi‐Khojin, Amin</creatorcontrib><creatorcontrib>Mishra, Rohan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavin, John</au><au>Ahmadiparidari, Alireza</au><au>Majidi, Leily</au><au>Thind, Arashdeep Singh</au><au>Misal, Saurabh N.</au><au>Prajapati, Aditya</au><au>Hemmat, Zahra</au><au>Rastegar, Sina</au><au>Beukelman, Andrew</au><au>Singh, Meenesh R.</au><au>Unocic, Kinga A.</au><au>Salehi‐Khojin, Amin</au><au>Mishra, Rohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>31</issue><spage>e2100347</spage><epage>n/a</epage><pages>e2100347-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2 electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems.
High‐entropy transition metal dichalcogenide alloys containing 4 or 5 transition metals are synthesized based on first‐principles stability predictions. The 5‐component alloy (MoWVNbTa)S2 is shown to be an excellent electrocatalyst for the conversion of CO2 into CO. First‐principles calculations suggest that a small concentration of highly active sites is responsible for the high activity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202100347</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0876-5409</orcidid><orcidid>https://orcid.org/0000-0003-1819-204X</orcidid><orcidid>https://orcid.org/0000-0003-1261-0087</orcidid><orcidid>https://orcid.org/0000000208765409</orcidid><orcidid>https://orcid.org/0000000312610087</orcidid><orcidid>https://orcid.org/000000031819204X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2100347-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1798903 |
source | Access via Wiley Online Library |
subjects | 2D materials Alloying elements Carbon dioxide Catalysis Chalcogenides electrocatalysis Electrochemical analysis Entropy High entropy alloys Materials science Transition metal alloys Transition metal compounds transition metal dichalcogenides |
title | 2D High‐Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20High%E2%80%90Entropy%20Transition%20Metal%20Dichalcogenides%20for%20Carbon%20Dioxide%20Electrocatalysis&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cavin,%20John&rft.date=2021-08-01&rft.volume=33&rft.issue=31&rft.spage=e2100347&rft.epage=n/a&rft.pages=e2100347-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202100347&rft_dat=%3Cproquest_osti_%3E2557882379%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557882379&rft_id=info:pmid/&rfr_iscdi=true |