Flash Graphene Morphologies

Flash Joule heating (FJH) can convert almost any carbon-based precursor into bulk quantities of graphene. This work explores the morphologies and properties of flash graphene (FG) generated from carbon black. It is shown that FG is partially comprised of sheets of turbostratic FG (tFG) that have a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-10, Vol.14 (10), p.13691-13699
Hauptverfasser: Stanford, Michael G, Bets, Ksenia V, Luong, Duy X, Advincula, Paul A, Chen, Weiyin, Li, John Tianci, Wang, Zhe, McHugh, Emily A, Algozeeb, Wala A, Yakobson, Boris I, Tour, James M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13699
container_issue 10
container_start_page 13691
container_title ACS nano
container_volume 14
creator Stanford, Michael G
Bets, Ksenia V
Luong, Duy X
Advincula, Paul A
Chen, Weiyin
Li, John Tianci
Wang, Zhe
McHugh, Emily A
Algozeeb, Wala A
Yakobson, Boris I
Tour, James M
description Flash Joule heating (FJH) can convert almost any carbon-based precursor into bulk quantities of graphene. This work explores the morphologies and properties of flash graphene (FG) generated from carbon black. It is shown that FG is partially comprised of sheets of turbostratic FG (tFG) that have a rotational mismatch between neighboring layers. The remainder of the FG is wrinkled graphene sheets that resemble nongraphitizing carbon. To generate high quality tFG sheets, a FJH duration of 30–100 ms is employed. Beyond 100 ms, the turbostratic sheets have time to AB-stack and form bulk graphite. Atomistic simulations reveal that generic thermal annealing yields predominantly wrinkled graphene which displays minimal to no alignment of graphitic planes, as opposed to the high-quality tFG that might be formed under the direct influence of current conducted through the material. The tFG was easily exfoliated via shear, hence the FJH process has the potential for bulk production of tFG without the need for pre-exfoliation using chemicals or high energy mechanical shear.
doi_str_mv 10.1021/acsnano.0c05900
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1798502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441610758</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-a1024bd50c5114207dc7f18f2f1a83d152156c4625039fd79e0a674707911b733</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbPHrwUT4KkndlkP3KUYqtQ8aLgbdluNiYl3Y27ycF_byTBm6cZmOedYR5CrhGWCBRX2kSnnV-CAZYDnJAZ5ilPQPKP07-e4Tm5iPEAwIQUfEZuNo2O1WIbdFtZZxcvPrSVb_xnbeMlOSt1E-3VVOfkffP4tn5Kdq_b5_XDLtGpkF2ih_PZvmBgGGJGQRRGlChLWqKWaYGMIuMm45RBmpeFyC1oLjIBIkfcizSdk9txr49draKpO2sq452zplMocsmADtDdCLXBf_U2dupYR2ObRjvr-6holiFHEEwO6GpETfAxBluqNtRHHb4Vgvp1pSZXanI1JO7HxDBQB98HN_z7L_0DD8dpEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441610758</pqid></control><display><type>article</type><title>Flash Graphene Morphologies</title><source>ACS Publications</source><creator>Stanford, Michael G ; Bets, Ksenia V ; Luong, Duy X ; Advincula, Paul A ; Chen, Weiyin ; Li, John Tianci ; Wang, Zhe ; McHugh, Emily A ; Algozeeb, Wala A ; Yakobson, Boris I ; Tour, James M</creator><creatorcontrib>Stanford, Michael G ; Bets, Ksenia V ; Luong, Duy X ; Advincula, Paul A ; Chen, Weiyin ; Li, John Tianci ; Wang, Zhe ; McHugh, Emily A ; Algozeeb, Wala A ; Yakobson, Boris I ; Tour, James M ; Rice Univ., Houston, TX (United States)</creatorcontrib><description>Flash Joule heating (FJH) can convert almost any carbon-based precursor into bulk quantities of graphene. This work explores the morphologies and properties of flash graphene (FG) generated from carbon black. It is shown that FG is partially comprised of sheets of turbostratic FG (tFG) that have a rotational mismatch between neighboring layers. The remainder of the FG is wrinkled graphene sheets that resemble nongraphitizing carbon. To generate high quality tFG sheets, a FJH duration of 30–100 ms is employed. Beyond 100 ms, the turbostratic sheets have time to AB-stack and form bulk graphite. Atomistic simulations reveal that generic thermal annealing yields predominantly wrinkled graphene which displays minimal to no alignment of graphitic planes, as opposed to the high-quality tFG that might be formed under the direct influence of current conducted through the material. The tFG was easily exfoliated via shear, hence the FJH process has the potential for bulk production of tFG without the need for pre-exfoliation using chemicals or high energy mechanical shear.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c05900</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>01 COAL, LIGNITE, AND PEAT ; crystals ; FJH ; flash Joule heating ; graphene ; graphene morphology ; materials ; morphology ; Raman spectroscopy ; turbostratic graphene ; two dimensional materials</subject><ispartof>ACS nano, 2020-10, Vol.14 (10), p.13691-13699</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-a1024bd50c5114207dc7f18f2f1a83d152156c4625039fd79e0a674707911b733</citedby><cites>FETCH-LOGICAL-a378t-a1024bd50c5114207dc7f18f2f1a83d152156c4625039fd79e0a674707911b733</cites><orcidid>0000-0001-9663-1138 ; 0000-0003-1070-3992 ; 0000-0002-7218-8298 ; 0000-0002-8479-9328 ; 0000000196631138 ; 0000000284799328 ; 0000000272188298 ; 0000000310703992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c05900$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c05900$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1798502$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stanford, Michael G</creatorcontrib><creatorcontrib>Bets, Ksenia V</creatorcontrib><creatorcontrib>Luong, Duy X</creatorcontrib><creatorcontrib>Advincula, Paul A</creatorcontrib><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Li, John Tianci</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>McHugh, Emily A</creatorcontrib><creatorcontrib>Algozeeb, Wala A</creatorcontrib><creatorcontrib>Yakobson, Boris I</creatorcontrib><creatorcontrib>Tour, James M</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><title>Flash Graphene Morphologies</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Flash Joule heating (FJH) can convert almost any carbon-based precursor into bulk quantities of graphene. This work explores the morphologies and properties of flash graphene (FG) generated from carbon black. It is shown that FG is partially comprised of sheets of turbostratic FG (tFG) that have a rotational mismatch between neighboring layers. The remainder of the FG is wrinkled graphene sheets that resemble nongraphitizing carbon. To generate high quality tFG sheets, a FJH duration of 30–100 ms is employed. Beyond 100 ms, the turbostratic sheets have time to AB-stack and form bulk graphite. Atomistic simulations reveal that generic thermal annealing yields predominantly wrinkled graphene which displays minimal to no alignment of graphitic planes, as opposed to the high-quality tFG that might be formed under the direct influence of current conducted through the material. The tFG was easily exfoliated via shear, hence the FJH process has the potential for bulk production of tFG without the need for pre-exfoliation using chemicals or high energy mechanical shear.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>crystals</subject><subject>FJH</subject><subject>flash Joule heating</subject><subject>graphene</subject><subject>graphene morphology</subject><subject>materials</subject><subject>morphology</subject><subject>Raman spectroscopy</subject><subject>turbostratic graphene</subject><subject>two dimensional materials</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbPHrwUT4KkndlkP3KUYqtQ8aLgbdluNiYl3Y27ycF_byTBm6cZmOedYR5CrhGWCBRX2kSnnV-CAZYDnJAZ5ilPQPKP07-e4Tm5iPEAwIQUfEZuNo2O1WIbdFtZZxcvPrSVb_xnbeMlOSt1E-3VVOfkffP4tn5Kdq_b5_XDLtGpkF2ih_PZvmBgGGJGQRRGlChLWqKWaYGMIuMm45RBmpeFyC1oLjIBIkfcizSdk9txr49draKpO2sq452zplMocsmADtDdCLXBf_U2dupYR2ObRjvr-6holiFHEEwO6GpETfAxBluqNtRHHb4Vgvp1pSZXanI1JO7HxDBQB98HN_z7L_0DD8dpEw</recordid><startdate>20201027</startdate><enddate>20201027</enddate><creator>Stanford, Michael G</creator><creator>Bets, Ksenia V</creator><creator>Luong, Duy X</creator><creator>Advincula, Paul A</creator><creator>Chen, Weiyin</creator><creator>Li, John Tianci</creator><creator>Wang, Zhe</creator><creator>McHugh, Emily A</creator><creator>Algozeeb, Wala A</creator><creator>Yakobson, Boris I</creator><creator>Tour, James M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9663-1138</orcidid><orcidid>https://orcid.org/0000-0003-1070-3992</orcidid><orcidid>https://orcid.org/0000-0002-7218-8298</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000000196631138</orcidid><orcidid>https://orcid.org/0000000284799328</orcidid><orcidid>https://orcid.org/0000000272188298</orcidid><orcidid>https://orcid.org/0000000310703992</orcidid></search><sort><creationdate>20201027</creationdate><title>Flash Graphene Morphologies</title><author>Stanford, Michael G ; Bets, Ksenia V ; Luong, Duy X ; Advincula, Paul A ; Chen, Weiyin ; Li, John Tianci ; Wang, Zhe ; McHugh, Emily A ; Algozeeb, Wala A ; Yakobson, Boris I ; Tour, James M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-a1024bd50c5114207dc7f18f2f1a83d152156c4625039fd79e0a674707911b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>crystals</topic><topic>FJH</topic><topic>flash Joule heating</topic><topic>graphene</topic><topic>graphene morphology</topic><topic>materials</topic><topic>morphology</topic><topic>Raman spectroscopy</topic><topic>turbostratic graphene</topic><topic>two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanford, Michael G</creatorcontrib><creatorcontrib>Bets, Ksenia V</creatorcontrib><creatorcontrib>Luong, Duy X</creatorcontrib><creatorcontrib>Advincula, Paul A</creatorcontrib><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Li, John Tianci</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>McHugh, Emily A</creatorcontrib><creatorcontrib>Algozeeb, Wala A</creatorcontrib><creatorcontrib>Yakobson, Boris I</creatorcontrib><creatorcontrib>Tour, James M</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanford, Michael G</au><au>Bets, Ksenia V</au><au>Luong, Duy X</au><au>Advincula, Paul A</au><au>Chen, Weiyin</au><au>Li, John Tianci</au><au>Wang, Zhe</au><au>McHugh, Emily A</au><au>Algozeeb, Wala A</au><au>Yakobson, Boris I</au><au>Tour, James M</au><aucorp>Rice Univ., Houston, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flash Graphene Morphologies</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-10-27</date><risdate>2020</risdate><volume>14</volume><issue>10</issue><spage>13691</spage><epage>13699</epage><pages>13691-13699</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Flash Joule heating (FJH) can convert almost any carbon-based precursor into bulk quantities of graphene. This work explores the morphologies and properties of flash graphene (FG) generated from carbon black. It is shown that FG is partially comprised of sheets of turbostratic FG (tFG) that have a rotational mismatch between neighboring layers. The remainder of the FG is wrinkled graphene sheets that resemble nongraphitizing carbon. To generate high quality tFG sheets, a FJH duration of 30–100 ms is employed. Beyond 100 ms, the turbostratic sheets have time to AB-stack and form bulk graphite. Atomistic simulations reveal that generic thermal annealing yields predominantly wrinkled graphene which displays minimal to no alignment of graphitic planes, as opposed to the high-quality tFG that might be formed under the direct influence of current conducted through the material. The tFG was easily exfoliated via shear, hence the FJH process has the potential for bulk production of tFG without the need for pre-exfoliation using chemicals or high energy mechanical shear.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c05900</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9663-1138</orcidid><orcidid>https://orcid.org/0000-0003-1070-3992</orcidid><orcidid>https://orcid.org/0000-0002-7218-8298</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000000196631138</orcidid><orcidid>https://orcid.org/0000000284799328</orcidid><orcidid>https://orcid.org/0000000272188298</orcidid><orcidid>https://orcid.org/0000000310703992</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-10, Vol.14 (10), p.13691-13699
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1798502
source ACS Publications
subjects 01 COAL, LIGNITE, AND PEAT
crystals
FJH
flash Joule heating
graphene
graphene morphology
materials
morphology
Raman spectroscopy
turbostratic graphene
two dimensional materials
title Flash Graphene Morphologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flash%20Graphene%20Morphologies&rft.jtitle=ACS%20nano&rft.au=Stanford,%20Michael%20G&rft.aucorp=Rice%20Univ.,%20Houston,%20TX%20(United%20States)&rft.date=2020-10-27&rft.volume=14&rft.issue=10&rft.spage=13691&rft.epage=13699&rft.pages=13691-13699&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c05900&rft_dat=%3Cproquest_osti_%3E2441610758%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441610758&rft_id=info:pmid/&rfr_iscdi=true